# INTEGRATED PEST MANAGEMENT MU Guide

PUBLISHED BY UNIVERSITY OF MISSOURI EXTENSION

### Integrated Pest Management in Greenhouses and Herbaceous Nurseries

For more than 30 years the U.S. Department of Agriculture has promoted integrated pest management (IPM) as a way of dealing with arthropod (insect and mite) pests in greenhouses and herbaceous nurseries. IPM strategies include the use of cultural, biological and physical (or mechanical) methods as well as pesticides to manage pests. IPM relies on routine inspection, scouting and monitoring of arthropod populations followed by the use of insecticides or miticides only when pest populations are capable of causing plant damage. If the use of these pesticides is warranted, then it is important to choose those products that are less harmful to the environment and to beneficial insects and mites (Figure 1).

This publication is designed to assist greenhouse and nursery managers in selecting the appropriate pesticides to control or regulate the multitude of arthropod pests encountered in greenhouses and nurseries. The primary arthropod pests encountered in greenhouses and herbaceous nurseries in both Missouri and Kansas are aphids, thrips, fungus gnats, shore flies, spider mites, mealybugs, plant bugs, whiteflies, leafhoppers, leafminers, leaf-feeding beetles and caterpillars.

## Alternative or "reduced-risk" pesticides

Use of pesticides has changed dramatically since 1985. Before that time, pesticides in three chemical classes — organophosphates, carbamates and chlorinated hydrocarbons — were relied upon to manage

#### Authors

James Quinn is a Horticulture Extension Specialist, University of Missouri, Columbia.

**David Trinklein** is Associate Professor and State Floricultural Extension Specialist, Division of Plant Sciences, University of Missouri, Columbia.

**Raymond A. Cloyd** is Associate Professor and Extension Specialist in Ornamental Entomology/Integrated Pest Management, Department of Entomology, Kansas State University, Manhattan.



Figure 1. Ladybird beetles, known for their appetite for aphids, occur naturally in Missouri but also can be introduced as biocontrol agents in greenhouses and nurseries.

plant-feeding insects and mites. Use of materials in these older chemical classes was reduced somewhat with the availability of products in a fourth chemical class, pyrethroids. Since 1985, the Environmental Protection Agency (EPA) has reevaluated the registration of older pesticides and has encouraged the development of alternative pesticides that reduce risk to human health, toxicity to nontarget organisms, and the potential for groundwater contamination. These materials are preferred for use in greenhouses and herbaceous nurseries because they are (1) less persistent (shorter residual activity) in the environment, (2) less directly harmful to natural enemies, including parasitoids and predators, and (3) effective in controlling arthropod pests at reduced application rates when compared with other pesticides.

In 1993, the EPA defined alternative or "reducedrisk" pesticides as those that present less risk to human health and the environment than conventional alternatives. Although EPA does not permit manufacturers to use the term "reduced-risk" on product labels, the term is commonly used in promotional and marketing materials. In addition to chemical pesticides, some reduced-risk pesticides contain microorganisms. Examples include spinosad (Conserve), abamectin

## Ways to reduce use of pesticides

Although pest control materials are generally effective in killing arthropod pests, overreliance on this control method increases the likelihood that resistance will develop in arthropod pest populations. Therefore, it is important to use cultural, physical and biological control strategies as well as using pest control materials. The following practices will reduce the use of pest control materials in greenhouses and nurseries:

- Start the growing season with clean greenhouses and nurseries; remove weeds and all other plant material and eliminate debris, such as growing medium.
- Maintain adequate sanitation and use proper cultural practices (watering and fertility) throughout the growing season.
- Scout plants weekly, especially indicator plants, those that typically affected by arthropod pest problems.
- Use colored sticky cards (yellow or blue) and visually inspect plants. Record insect and mite pest observations, such as abundance (number of pests per plant or row) and life stages (eggs, nymphs or larvae, pupae and adults).
- Inspect transplants or propagation material carefully. Isolate newly introduced plants and inspect for any arthropod pest problems. If arthropod pests are present, then treat with an appropriate pest control material.
- Treat only those plants directly affected by arthropod pests or localized infestations.
- If possible, install insect screening over greenhouse openings such as ridge vents, sidewalls and intake vents. Be sure to compensate for the resulting reduction in airflow by increasing the screening surface area.

(Avid), *Bacillus thuringienisis* spp. *kurstaki* (Dipel), and *Bacillus thuringiensis* spp. *israelensis* (Gnatrol). Pesticides derived from plants, often called botanicals or plant-derived essential oils, are also available for use in greenhouses and herbaceous nurseries. Examples are the clarified hydrophobic extract from neem seed (Triact) and the product GC-Mite, which contains cottonseed, clove and garlic oil.

Tables 1 and 3 list pesticides registered for use in greenhouses and herbaceous nurseries. Table 2 lists those specifically designated for use in organic cropping systems. More information on reduced-risk materials is available online at *epa.gov/opprd001/workplan/completionsportrait.pdf*.

New pesticides are generally registered more rapidly for use on ornamental plants than on food crops because they are not edible and do not require extensive food safety testing. However, registration for greenhouse-grown vegetables is usually delayed or may not occur. This may be confusing especially with regard to vegetable bedding plants. Several of the pesticides listed in Table 1 may be used on vegetable bedding plants. However, it is critical to read the label to obtain this information. Higher infestation levels of arthropod pests are more tolerable in vegetable production systems than in ornamental crops because plants such as tomatoes and cucumbers are primarily grown for fruit production, and may even be saleable if the plants exhibit damage from insect or mite pest feeding. Overall, it is important to read the product label before applying any pesticide to make sure that the insect or mite pests as well as the treatment site are designated.

#### **Biological control**

Biological control agents, or natural enemies such as parasitoids and predators, can be purchased from commercial suppliers or distributors and released into greenhouses (see "Biological control suppliers" on page 6). This practice is referred to as augmentative biological control, for which there are two control strategies: inoculation and inundation. Inoculation consists of releasing small numbers of natural enemies early in the growing season or cropping cycle so that a population of natural enemies will establish and reproduce in the greenhouse, providing long-term control. Inundation is the introduction of much larger numbers of natural enemies into a greenhouse to provide control in the short term. Additional releases may be required during the growing season or cropping cycle to keep arthropod pest populations at low levels.

Consult biological control suppliers and distributors for additional information on the use of natural enemies in greenhouses and herbaceous nurseries. Biological control programs tend to be more effective when crops are grown for extended periods (e.g., cut flowers and vegetables) and when environmental conditions (e.g., temperature and relative humidity) are constant. Preventive releases of natural enemies are more efficient and easier in a monoculture (e.g., single



Figure 2. The Aphidius wasp, left, stings the aphid and lays an egg in the aphid's body, which mummifies, right, as the egg develops. Photo: Marion Herbert, Alberta Research Station, Vegreville.

#### Guidelines for implementing a biological control program

- Scout the crop regularly to detect early infestations of arthropod pests before they reach damaging levels.
- Order natural enemies early (at least three weeks before they are needed) and release them immediately or as soon as possible after arrival. Follow the supplier's instruction for release.
- Install insect screening over greenhouse openings such as ridge vents, sidewalls and air intake vents to reduce the migration of winged aphids, adult whiteflies, thrips, and leafminers into greenhouses. Be sure to compensate for any reduction in airflow by increasing the screening surface area.
- Avoid overfertilizing plants, particularly with nitrogen-based fertilizers, because this results in the production of soft, succulent growth that is more susceptible to aphids and the twospotted spider mite (Tetranychus urticae).
- Remove yellow sticky cards before applying parasitoids, because sticky cards can attract and capture parasitoids. Yellow sticky cards can be replaced one week after making releases.
- Reduce the use of pesticide when bumblebees are used as pollinators, and avoid applying pest control materials with extended residual activity, such as products in the organophosphate, carbamate and pyrethroid chemical classes. Drenching applications of systemic insecticides to the growing medium will be less harmful than foliar applications.

crop) cropping system when there is only one arthropod pest than in a polyculture (e.g., multiple crops) cropping systems where there may be more than three different arthropod pests. For example, in the production of spring bedding plants, various insect pests may be present simultaneously, including aphids, thrips, whiteflies and fungus gnats.

The greenhouse environment does not contain the abundance and diversity of natural enemies found in outdoor settings or nurseries. This is mainly because of the extensive use of pesticides and because natural enemies typically do not migrate into greenhouses. The survival of natural enemies in a greenhouse is influenced by the abundance and types of prey that are present. However, certain parasitoids and predators sometimes occur naturally in greenhouses. For example, parasitoids in the genus *Aphidius*, which prey upon many different types of aphids, can inadvertently enter greenhouses through doors, vents or sidewalls. Adult females lay eggs into aphids, and these eggs hatch into larvae that consume the internal organs of the aphids, leaving only their hardened, brown exteriors, or "aphid mummies" (Figure 2). Eventually, a new adult parasitoid creates an exit hole and emerges from the dead aphid. Minute pirate bugs, *Orius* spp., are predatory anthocorid bugs that feed on thrips. These black and white bugs may also enter greenhouses through openings, particularly when weeds and field crops start desiccating.

Natural enemies that may be present in outdoor nurseries include ladybird beetles, green lacewings, ground beetles, soldier beetles, assassin/ambush bugs, damsel bugs, hover (syrphid) flies, tachinid flies, predatory mites and spiders.

| Table 1. Pesticides (insecticides and miticides) registered for use on ornamental plants or greenhouse-grown vegetal | oles. |
|----------------------------------------------------------------------------------------------------------------------|-------|
| (Always read the label to determine if a pesticide can be used in a particular facility and on a specific crop.)     |       |

| Common name or<br>active ingredient<br>(Trade name)     | Class                               | Mode of action                                                      | Reentry<br>interval | Labeled pests                                                   | Additional products      |
|---------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|---------------------|-----------------------------------------------------------------|--------------------------|
| abamectin<br>(Avid)                                     | Macrocyclic lactone                 | Gamma-aminobutyric acid<br>(GABA) chloride channel<br>activator [6] | 12 hours            | spider mites, thrips,<br>leafminers                             |                          |
| acephate<br>(Orthene/Precise)                           | Organophosphate                     | Acetylcholine esterase inhibitor [1B]                               | 24 / 12 hours       | aphids, whiteflies, scales, mealybugs, thrips                   |                          |
| acequinocyl<br>(Shuttle)                                | Napththoquinone                     | Mitochondria electron transport inhibitor [20B]                     | 12 hours            | spider mites                                                    |                          |
| acetamiprid<br>(TriStar)                                | Neonicotinoid                       | Nicotinic acetylcholine receptor disruptor [4A]                     | 12 hours            | aphids, whiteflies, mealybugs, scales                           |                          |
| azadirachtin<br>(Azatin/Ornazin)                        | Botanical (insect growth regulator) | Ecdysone antagonist [18B]                                           | 4 / 12 hours        | aphids, fungus gnat larvae,<br>thrips, whiteflies, caterpillars | Aza-Direct<br>and Neemix |
| Bacillus<br>thuringiensis spp.<br>israelensis (Gnatrol) | Microbial                           | Midgut membrane disruptor [11A1]                                    | 4 hours             | fungus gnat larvae                                              |                          |

Note: Numbers and letters in brackets [xx] indicate the IRAC (Insecticide Resistance Action Committee) mode of action designation found on the label.

Table 1. Pest control materials (insecticides and miticides) registered for use on ornamental plants or greenhouse-grown vegetables. *(continued)* 

(Always read the label to determine if a pesticide can be used in a particular facility and on a specific crop.)

|                                                          | · ·                                                        | -                                                       | •                   | • • • • •                                                                                                         |                           |
|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|
| Common name or<br>active ingredient<br>(Trade name)      | Class                                                      | Mode of action                                          | Reentry<br>interval | Labeled pests                                                                                                     | Additional products       |
| Bacillus<br>thuringiensis spp.<br>kurstaki<br>(Dipel)    | Microbial                                                  | Midgut membrane disruptor<br>[11B2]                     | 4 hours             | caterpillars                                                                                                      |                           |
| <i>Beauveria bassiana</i><br>(BotaniGard)                | Microbial<br>(entomopathogenic<br>fungi)                   | Direct infection of host by hyphae                      | 4 hours             | aphids, mealybugs, whiteflies                                                                                     | Naturalis and<br>Mycotrol |
| bifenazate<br>(Floramite)                                | Carbazate                                                  | Gamma-aminobutyric acid<br>(GABA) gated antagonist [25] | 4 hours             | spider mites                                                                                                      |                           |
| bifenthrin<br>(Talstar/Attain)                           | Pyrethroid                                                 | Sodium channel blocker [3]                              | 12 hours            | aphids, caterpillars, fungus<br>gnat adults, mealybugs,<br>scales, plant bugs, thrips,<br>leafhoppers, whiteflies |                           |
| buprofezin<br>(Talus)                                    | Benzoylurea (insect growth regulator)                      | Chitin synthesis inhibitor [16]                         | 12 hours            | whiteflies, mealybugs, scales and leafhoppers                                                                     |                           |
| chlorfenapyr<br>(Pylon)                                  | Pyrrole                                                    | Oxidative phosphorylation uncoupler [13]                | 12 hours            | spider mites, broad mite,<br>cyclamen mite, fungus gnat<br>larvae, thrips                                         |                           |
| chlorpyrifos<br>(DuraGuard)                              | Organophosphate                                            | Acetylcholine esterase inhibitor<br>[1B]                | 24 hours            | aphids, caterpillars, fungus<br>gnat larvae, leafhoppers,<br>mealybugs, shore fly larvae,<br>thrips               |                           |
| clarified hydrophobic<br>extract of neem oil<br>(Triact) | Botanical                                                  | Suffocation or membrane disruptor                       | 12 hours            | aphids, whiteflies, spider<br>mites, scales                                                                       |                           |
| clofentezine<br>(Ovation)                                | Tetrazine                                                  | Growth and embryogenesis inhibitor [10A]                | 12 hours            | spider mites                                                                                                      |                           |
| cyfluthrin<br>(Decathlon/Tempo)                          | Pyrethroid                                                 | Sodium channel blocker [3]                              | 12 hours            | aphids, caterpillars, fungus<br>gnat adults, mealybugs,<br>scales, thrips, whiteflies                             |                           |
| cyromazine<br>(Citation)                                 | Triazine (insect growth regulator)                         | Chitin synthesis inhibitor [17]                         | 12 hours            | fungus gnat larvae, shore fly<br>larvae, leafminers                                                               |                           |
| diflubenzuron<br>(Adept)                                 | Benzoylurea (insect growth regulator)                      | Chitin synthesis inhibitor [15]                         | 12 hours            | fungus gnat and shore fly<br>larvae                                                                               |                           |
| dinotefuran<br>(Safari)                                  | Neonicotinoid                                              | Nicotinic acetylcholine receptor disruptor [4A]         | 12 hours            | aphids, whiteflies, scales,<br>leafminers, thrips,<br>leafhoppers, mealybugs                                      |                           |
| etoxazole<br>(TetraSan)                                  | Diphenyloxizoline<br>derivative (mite<br>growth regulator) | Chitin synthesis inhibitor [10B]                        | 12 hours            | spider mites                                                                                                      |                           |
| fenbutatin-oxide<br>(ProMite)                            | Organotin                                                  | Oxidative phosphorylation inhibitor [12B]               | 48 hours            | spider mites                                                                                                      |                           |
| fenoxycarb<br>(Preclude)                                 | Carbamate (insect growth regulator)                        | Juvenile hormone mimic [7B]                             | 12 hours            | aphids, caterpillars,<br>leafminers, mealybugs,<br>scales, thrips, whiteflies                                     |                           |
| fenpropathrin<br>(Tame)                                  | Pyrethroid                                                 | Sodium channel blocker [3]                              | 24 hours            | caterpillars, fungus gnat<br>adults, mealybugs, whiteflies                                                        |                           |
| fenpyroximate<br>(Akari)                                 | Phenoxypyrazole                                            | Mitochondria electron transport inhibitor [21]          | 12 hours            | spider mites                                                                                                      |                           |
| flonicamid<br>(Aria)                                     | Trifluoromethyl-<br>nicotinamide                           | Selective feeding blocker [9C]                          | 12 hours            | aphids, thrips, whiteflies                                                                                        |                           |

Note: Numbers and letters in brackets [xx] indicate the IRAC (Insecticide Resistance Action Committee) mode of action designation found on the label.

Table 1. Pest control materials (insecticides and miticides) registered for use on ornamental plants or greenhouse-grown vegetables. *(continued)* 

(Always read the label to determine if a pesticide can be used in a particular facility and on a specific crop.)

|                                                                     | •                                                    | •                                                                   |                     | ,                                                                                                           |                                     |
|---------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Common name or<br>active ingredient<br>(Trade name)                 | Class                                                | Mode of action                                                      | Reentry<br>interval | Labeled pests                                                                                               | Additional products                 |
| fluvalinate<br>(Mavrik)                                             | Pyrethroid                                           | Sodium channel blocker [3]                                          | 12 hours            | aphids, fungus gnat<br>adults, thrips, leafhoppers,<br>caterpillars, plant bugs,<br>whiteflies              |                                     |
| hexythiazox<br>(Hexygon)                                            | Carboxamide                                          | Growth and embryogenesis inhibitor [10A]                            | 12 hours            | spider mites                                                                                                |                                     |
| imidacloprid<br>(Marathon/Merit)                                    | Neonicotinoid                                        | Nicotinic acetylcholine receptor disruptor [4A]                     | 12 hours            | aphids, whiteflies, scales,<br>mealybugs                                                                    | Admire,<br>Benefit,<br>Mantra       |
| kinoprene<br>(Enstar II)                                            | Insect growth<br>regulator                           | Juvenile hormone mimic [7A]                                         | 4 hours             | aphids, fungus gnat larvae,<br>mealybugs, scales, thrips,<br>whiteflies                                     |                                     |
| methiocarb<br>(Mesurol)                                             | Carbamate                                            | Acetylcholine esterase inhibitor [1A]                               | 24 hours            | aphids, thrips, snails/slugs                                                                                |                                     |
| milbemectin<br>(Ultiflora)                                          | Macrocyclic lactone                                  | Gamma-aminobutyric acid<br>(GABA) chloride channel<br>activator [6] | 12 hours            | spider mites                                                                                                |                                     |
| novaluron<br>(Pedestal)                                             | Benzoylurea (insect growth regulator)                | Chitin synthesis inhibitor [15]                                     | 12 hours            | thrips, whiteflies, caterpillars, leafminers                                                                |                                     |
| paraffinic oil<br>(Ultra-Fine Oil)                                  | Refined petroleum distillate                         | Suffocation or membrane disruptor                                   | 4 hours             | aphids, mealybugs, scales, spider mites, whiteflies                                                         |                                     |
| petroleum oil<br>(PureSpray Green)                                  | Refined petroleum distillate                         | Suffocation or membrane disruptor                                   | 4 hours             | aphids, mealybugs, scales, spider mites, whiteflies                                                         |                                     |
| potassium salts of<br>fatty acids<br>(insecticidal soap/<br>M-Pede) | Insecticidal soap                                    | Desiccation or membrane<br>disruptor                                | 12 hours            | aphids, caterpillars, fungus<br>gnat adults, leafhoppers,<br>mealybugs, scales, spider<br>mites, whiteflies |                                     |
| pymetrozine<br>(Endeavor)                                           | Pyridine<br>(Azomethine)                             | Selective feeding blocker [9B]                                      | 12 hours            | aphids and whiteflies                                                                                       |                                     |
| pyridaben<br>(Sanmite)                                              | Pyridazinone                                         | Mitochondria electron transport inhibitor [21]                      | 12 hours            | spider mites and whiteflies                                                                                 |                                     |
| pyriproxyfen<br>(Distance)                                          | Pyridine (insect growth regulator)                   | Juvenile hormone mimic [7C]                                         | 12 hours            | fungus gnat and shore fly<br>larvae, scales, whiteflies                                                     |                                     |
| pyrethrin<br>(Pyganic)                                              | Botanical                                            | Sodium channel blocker [3]                                          | 12 hours            | aphids, caterpillars, beetles, mealybugs, thrips, whiteflies                                                | Pyreth-It and<br>Pyrethrum          |
| pyrethrin and silicon<br>dioxide<br>(Diatect V)                     | Botanical                                            | Central nervous system disruptor and desiccant [3]                  | 12 hours            | labeled pests: aphids, caterpillars, whiteflies                                                             |                                     |
| spinosad<br>(Conserve/Entrust)                                      | Spinosyn                                             | Nicotinic acetylcholine receptor agonist [5]                        | 4 hours             | caterpillars, thrips, leafminers                                                                            |                                     |
| spiromesifen<br>(Judo)                                              | Tetronic acid                                        | Lipid biosynthesis inhibitor [23]                                   | 12 hours            | spider mites, broad mite, whiteflies                                                                        |                                     |
| Steinernema feltiae<br>(Nemasys)                                    | Biological control<br>(entomopathogenic<br>nematode) | Penetrant through insect cuticle<br>and degrades internal contents  | 0 hours             | fungus gnat larvae                                                                                          | NemaShield,<br>Scanmask,<br>Entonem |
| thiamethoxam<br>(Flagship)                                          | Neonicotinoid                                        | Nicotinic acetylcholine receptor disruptor [4A]                     | 12 hours            | aphids, whiteflies, mealybugs, scales                                                                       |                                     |

Note: Numbers and letters in brackets [xx] indicate the IRAC (Insecticide Resistance Action Committee) mode of action designation found on the label.

Table 2. Pesticides (insecticides and miticides) registered for use in organic production systems (ornamental plants, vegetables and herbs).

| Common name or active ingredient (Trade name)                                                                                                     | Class                                            | Mode of action                                                                                            | Reentry<br>interval | Labeled pests                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|
| azadirachtin<br>(Azatrol/Neemix)                                                                                                                  | Botanical (insect growth regulator)              | Ecdysone antagonist [18B]                                                                                 | 4 / 12 hours        | aphids, fungus gnat larvae, thrips,<br>whiteflies, caterpillars                                          |
| Bacillus thuringiensis<br>spp. israelensis<br>(Gnatrol)                                                                                           | Microbial                                        | Midgut membrane disruptor [11A1]                                                                          | 4 hours             | fungus gnat larvae                                                                                       |
| Bacillus thuringiensis<br>spp. kurstaki<br>(Dipel)                                                                                                | Microbial                                        | Midgut membrane disruptor [11B2]                                                                          | 4 hours             | caterpillars                                                                                             |
| clarified hydrophobic extract<br>of neem oil<br>(Triact)                                                                                          | Botanical                                        | Suffocation or membrane disruptor                                                                         | 12 hours            | aphids, whiteflies, spider mites, scales                                                                 |
| horticultural oils: petroleum<br>oils (PureSpray Green),<br>plant-based oils (GC-Mite/<br>Golden Pest Spray Oil),<br>fish-based oils (Organocide) | Refined petroleum<br>distillate and<br>botanical | Suffocation or membrane<br>disruptor (some products<br>have multiple modes of action;<br>refer to label). | 4 hours             | aphids, mealybugs, scales, spider<br>mites, whiteflies                                                   |
| kaolin clay<br>(Surround)                                                                                                                         | Protectant                                       | Multiple modes of action (refer to label)                                                                 | 4 hours             | caterpillars, beetles, tarnished plant<br>bug, stink bug, thrips                                         |
| potassium salts of fatty<br>acids<br>(insecticidal soap/M-Pede)                                                                                   | Insecticidal soap                                | Desiccation or membrane disruptor                                                                         | 12 hours            | aphids, caterpillars, fungus gnat<br>adults, leafhoppers, mealybugs,<br>scales, spider mites, whiteflies |
| pyrethrin<br>(Pyganic)                                                                                                                            | Botanical                                        | Sodium channel blocker [3]                                                                                | 12 hours            | aphids, caterpillars, beetles,<br>mealybugs, thrips, whiteflies                                          |
| spinosad<br>(Entrust)                                                                                                                             | Spinosyn                                         | Nicotinic acetylcholine<br>receptor agonist and GABA<br>chloride channel activator [5]                    | 4 hours             | caterpillars, thrips, leafminers                                                                         |

Note: Numbers and letters in brackets [xx] indicate the IRAC (Insecticide Resistance Action Committee) mode of action designation found on the label.

More information about the National Organic Program, online at usda.gov/wps/portal/!ut/p/\_s.7\_0\_A/7\_0\_10B?navid=ORGANIC\_CERTIFICATIO&navtype=RT&parentnav=AGRICULTURE

#### **Biological control suppliers**

•

- Green Spot 93 Priest Road Nottingham, NH 03290-6204 Phone: 603-942-8925 Online: greenmethods.com E-mail: info@greenmethods.com
- IPM Laboratories
  P.O. Box 300
  Locke, NY 13092-0300
  Phone: 315-497-2063
  Online: ipmlabs.com
  E-mail: ipminfo@Ipmlabs.com

- Koppert Inc. Romulus, Mich. Phone: 734-641-3763 E-mail: *info@koppertline.com*
- Syngenta Bioline Oxnard, Calif. Phone: 805-986-8255 E-mail: info@syngentabioline.com
- BioBest Biological Systems Online: biobest.be
   E-mail: info@biobest.ca

Sources of biological control agents are listed in the publication *Suppliers of Beneficial Organisms in North America* by Charles Hunter, which is available from the California Environmental Protection Agency (CEPA) online at *cdpr.ca.gov/docs/pestmgt/ipminov/bensuppl.htm* or from reputable suppliers.

Be sure to consult your biological control supplier to determine the availability and shipping requirements for the natural enemy species you are interested in.

### Table 3. Common greenhouse and nursery pests and pesticides registered for their control. (Always read the label to determine if a pesticide can be used in a particular facility and on a specific crop.)

| Pest         | Common name           | Trade name         | Pest             | Common name        | Trade name         |
|--------------|-----------------------|--------------------|------------------|--------------------|--------------------|
| onhido       | acanhata              | Orthono/Prosice    |                  | potassium salts of | Insecticidal soap/ |
| aphids       | acephate              | Orthene/Precise    |                  | fatty acids        | M-Pede             |
|              | acetamiprid           | TriStar            | leaf minana      | ch om o otin       | Avid               |
|              | azadirachtin          | Azatin/Ornazin     | leaf miners      | abamectin          | Avid               |
|              | Beauveria bassiana    | BotaniGard         |                  | cyromazine         | Citation           |
|              | bifenthrin            | Talstar/Attain     |                  | dinotefuran        | Safari             |
|              | chlorpyrifos          | Duraguard          |                  | fenoxycarb         | Preclude           |
|              | cyfluthrin            | Decathalon/Tempo   |                  | spinosad           | Conserve/Entrust   |
|              | dinotefuran           | Safari             | mealybugs        | acephate           | Orthene/Precise    |
|              | fenoxycarb            | Preclude           | mealybugs        | acetamiprid        | TriStar            |
|              | fenpropathrin         | Tame               |                  | Beauveria bassiana | BotaniGard         |
|              | flonicamid            | Aria               |                  | bifenthrin         |                    |
|              | fluvalinate           | Mavrik             |                  |                    | Talstar/Attain     |
|              | imidacloprid          | Marathon/Merit     |                  | chlorpyrifos       | Duraguard          |
|              | kinoprene             | Enstar II          |                  | cyfluthrin         | Decathalon/Tempo   |
|              | methiocarb            | Mesurol            |                  | fenoxycarb         | Preclude           |
|              | neem oil extract      | Triact             |                  | fenpropathrin      | Tame               |
|              | paraffinic oil        | Ultra-Fine oil     |                  | imidacloprid       | Marathon/Merit     |
|              | petroleum oil         | PureSpray Green    |                  | kinoprene          | Enstar II          |
|              | potassium salts of    | Insecticidal soap/ |                  | paraffinic oil     | Ultra-Fine oil     |
|              | fatty acids           | M-Pede             |                  | petroleum oil      | PureSpray Green    |
|              | pymetrozine           | Endeavor           |                  | potassium salts of | Insecticidal soap/ |
|              | pyrethrin             | Pyganic            |                  | fatty acids        | M-Pede             |
|              | pyrethrin and silicon | Diatect V          |                  | pyrethrin          | Pyganic            |
|              | dioxide               | Dialect            |                  | thiamethoxam       | Flagship           |
|              | thiamethoxam          | Flagship           |                  |                    |                    |
|              | unameuroxam           | Flagship           | mites,           |                    |                    |
| peetles      | pyrethrin             | Pyganic            | broad mite       | chlorfenapyr       | Pylon              |
|              | F)                    | ,,,                |                  | spiromesifen       | Judo               |
| caterpillars | azadirachtin          | Azatin/Ornazin     | cyclamen mite    | chlorfenapyr       | Pylon              |
|              | Bt spp. kurstaki      | Dipel              | spider mite      | abamectin          | Avid               |
|              | bifenthrin            | Talstar/Attain     |                  | acequinocyl        | Shuttle            |
|              | cyfluthrin            | Decathalon/Tempo   |                  | bifenazate         | Floramite          |
|              | fenoxycarb            | Preclude           |                  | chlorfenapyr       | Pylon              |
|              | fenpropathrin         | Tame               |                  | clofentezine       | Ovation            |
|              | fenpyroximate         | Akari              |                  | etoxazole          | TetraSan           |
|              | fluvalinate           | Mavrik             |                  | fenbutatin-oxide   | ProMite            |
|              | novaluron             | Pedestal           |                  | fenpyroximate      | Akari              |
|              | potassium salts of    | Insecticidal soap/ |                  | hexythiazox        | Hexagon            |
|              | fatty acids           | M-Pede             |                  | milbemectin        | Ultraflora         |
|              | pyrethrin             | Pyganic            |                  | neem oil extract   | Triact             |
|              | pyrethrin and silicon | Diatect V          |                  | paraffinic oil     | Ultra-Fine oil     |
|              | dioxide               | Dialect            |                  | petroleum oil      | PureSpray Green    |
|              | spinosad              | Conserve/Entrust   |                  |                    | Insecticidal soap/ |
|              | spinosau              | Conserve/Entrust   |                  | potassium salts of |                    |
| fungus gnat, |                       |                    |                  | fatty acids        | M-Pede<br>Saproita |
| adult        | bifenthrin            | Talstar/Attain     |                  | pyridaben          | Sanmite            |
|              | cyfluthrin            | Decathalon/Tempo   |                  | spiromesifen       | Judo               |
|              | fenpropathrin         | Tame               | plant bugs       | bifenthrin         | Talstar/Attain     |
|              | fluvalinate           | Mavrik             | picalit Rugo     | fluvalinate        | Mavrik             |
|              | potassium salts of    | Insecticidal soap/ |                  |                    |                    |
|              | fatty acids           | M-Pede             | scales           | acephate           | Orthene/Precise    |
| larvae       | azadirachtin          | Azatin/Ornazin     |                  | acetamiprid        | TriStar            |
| al vat       | Bt spp. israelensis   | Gnatrol            |                  | bifenthrin         | Talstar/Attain     |
|              |                       |                    |                  | neem oil extract   | Triact             |
|              | chlorfenapyr          | Pylon              |                  | cyfluthrin         | Decathalon/Tempo   |
|              | chlorpyrifos          | Duragard           |                  | fenoxycarb         | Preclude           |
|              | cyromazine            | Citation           |                  | imidacloprid       | Marathon/Merit     |
|              | diflubenzuron         | Adept              |                  | kinoprene          | Enstar II          |
|              | kinoprene             | Enstar II          |                  | paraffinic oil     | Ultra-Fine oil     |
|              | pyriproxyfen          | Distance           |                  | petroleum oil      | PureSpray Green    |
|              | Steinernema feltiae   | Nemasys            |                  |                    |                    |
| oof honners  | hifonthrin            | Talatar/Attain     |                  | potassium salts of | Insecticidal soap/ |
| eaf hoppers  | bifenthrin            | Talstar/Attain     |                  | fatty acids        | M-Pede             |
|              | buprofezin            | Talus              |                  | pyriproxfen        | Distance           |
|              | chlorpyrifos          | Duraguard          |                  | thiamethoxam       | Flagship           |
|              | dinotefuran           | Safari             | shore fly larvae | cyromazine         | Citation           |
|              | fluvalinate           | Mavrik             | Shore ny laivae  | diflubenzuron      | Adept              |
|              |                       |                    |                  |                    |                    |

| Table 3. Common greenhouse and nursery pests and pesticides registered for their control. (continued)            |
|------------------------------------------------------------------------------------------------------------------|
| (Always read the label to determine if a pesticide can be used in a particular facility and on a specific crop.) |

| Pest         | Common name           | Trade name                  |   | Pest | Pest Common name                  |
|--------------|-----------------------|-----------------------------|---|------|-----------------------------------|
|              |                       |                             | 1 |      | bifenthrin                        |
| slugs/snails | methiocarb            | Mesurol                     |   |      | neem oil extract                  |
| thrips       | abamectin             | Avid                        |   |      | cyfluthrin                        |
|              | acephate              | Orthene/Precise             | 1 |      | fenoxycarb                        |
|              | azadirachtin          | Azatin/Ornazin              |   |      | fenpropathrin                     |
|              | bifenthrin            | Talstar/Attain              | 1 |      | flonicamid                        |
|              | chlorfenapyr          | Pylon                       |   |      | fluvalinate                       |
|              | chlorpyrifos          | Duraguard                   | 1 |      | imidacloprid                      |
|              | cyfluthrin            | Decathalon/Tempo            |   |      | kinoprene                         |
|              | fenoxycarb            | Preclude                    | 1 |      | novaluron                         |
|              | flonicamid            | Aria                        |   |      | paraffinic oil                    |
|              | fluvalinate           | Mavrik                      |   |      | petroleum oil                     |
|              | kinoprene             | Enstar II                   |   |      | potassium salts of<br>fatty acids |
|              | methiocarb            | Mesurol                     |   |      | pymetrozine                       |
|              | novaluron             | Pedestal                    |   |      | pyridaben                         |
|              | pyrethrin<br>spinosad | Pyganic<br>Conserve/Entrust |   |      | pyriproxfen                       |
|              | spinosau              | Conserve/Entrust            |   |      | pyrethrin                         |
| whiteflies   | acephate              | Orthene/Precise             |   |      | pyrethrin and silicon             |
|              | acetamiprid           | TriStar                     |   |      | dioxide                           |
|              | azadirachtin          | Azatin/Ornazin              |   |      | spiromesifen                      |
|              | Beauveria bassiana    | BotaniGard                  |   |      | thiamethoxam                      |

### **Further information**

- Albajes, R., M. L. Gullino, J. C. van Lenteren, and Y. Elad (eds.). 1999. Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Netherlands.
- Bennett, K. C (ed.). 2009. Pest management guide for the production and maintenance of herbaceous perennials. Cornell University, Cooperative Extension, Ithaca, N.Y.
- Cloyd, R. A. 2007. Plant protection: Managing greenhouse insect and mite pests. Ball Publishing, Batavia, Ill.
- Dreistadt, S. H. 2001. Integrated pest management for floriculture and nurseries. University of California, Statewide Integrated Pest Management Project, Division of Agriculture and Natural Resources, Publication 3402. Oakland, Calif.
- Gill, S., R.A. Cloyd, J. R. Baker, D. L. Clement, and E. Dutky. 2006. Pests and diseases of herbaceous perennials: The biological approach. Ball Publishing, Batavia, Ill.
- Gill, S., and J. Sanderson. 1998. Ball identification guide to greenhouse pests and beneficials. Ball Publishing, Batavia, III.
- Heinz, K. M., R. G. Van Driesche, and M. P. Parrella (eds.). 2004. Biocontrol in protected culture. Ball Publishing, Batavia, III.

Helyer, N., K. Brown, and N. D. Cattlin. 2003. A color handbook of biological control in plant protection. Timber Press, Portland, Ore.

- Hofer, S. E., and D. H. Headrick. 2001. The bug cards: Greenhouse beneficials. Ball Publishing, Batavia, Ill.
- Krischik, V., and J. Davidson (eds.). 2004. IPM (integrated pest management) of Midwest landscapes. Cooperative Project of NCR-193, North Central Committee on Landscape IPM, Minnesota Agricultural Experiment Station SB-07645.
- Lindquist, R. K., and R. A. Cloyd. 2005. Identification of insects and related pests of horticultural plants. Ohio Floriculture Association Services, Inc., Columbus, Ohio.
- Rice Mahr, S. E., R. A. Cloyd, D. L. Mahr, and C. S. Sadof. 2001. Biological control of insects and other pests of greenhouse crops. North Central Regional Publication 581. Cooperative Extension of the University of Wisconsin, Madison, Wisc.
- Thomas, C. 2005. Greenhouse IPM with an emphasis on biocontrols. Publication AGRS-96. Pennsylvania Integrated Pest Management Program, Pennsylvania Department of Agriculture, Pennsylvania State University, University Park, Pa.



■ Issued in furtherance of the Cooperative Extension Work Acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. Director, Cooperative Extension, University of Missouri, Columbia, MO 65211 ■ an equal opportunity/ADA institution ■ 573-882-7216 ■ extension.missouri.edu