### Choices, Chances and Consequences

## The Risks and Rewards of Pasture Based Dairying

#### **Stacey Hamilton**

Dairy Extension Specialist Division of Animal Sciences Remember this is a systems approach Cows Land/grass People Buildings/infrastructure Each has its own set of parameters with a specific goal in mind Cows

Big, Little, Brown, Black, Red, White? Seasonal, Milk, Dual? "Horses for Courses" "Ford, Dodge, Chevy" Land/pasture forage (grasses, legumes, other) Hilly, Flat, Wet, Dry, Trees Monoculture, Diverse "Graze what grows in the ditches" Are you a People person? "no one can do it the way I want it done" System requires multiple staff Infrastructure

### Lanes (races), fencing, feeding (grain and other supplements) Milking facility Bare bones, High Tech, Robotic



Evolution of Grazing Where Do You Belong? • Stacey's Disclaimer!

 This is YOUR system, not mine, not the consultants and not the banks (Maybe!)

 There is no right or wrong but what makes YOU happy

### Maximum Milk or Profit?



## **Holistic Grazing Purist**

#### REWARD

- "All natural" pasture!
- Lowest input (no grain)
- Simple system
- Cows not stressed
- Niche market
- Reproduction

- Lowest milk production/cow (~7,000) and per acre
- Flexibility can be slow
- Drought
- Pasture management
- Can you take advantage of...

## **Realistic Grazing Purist**

#### REWARD

- High percentage pasture
- Low input (0-6# grain)
- Simple system
- Cows not stressed
- Reproduction

- Lower milk production/cow (~9,000) and per acre
- Some flexibility
- Drought
- Pasture management
- Can you take advantage of...

### Low Supplement Hybrid

### REWARD

- High percentage pasture
- Simple system
- Cows not stressed
- Milk production/cow (~12,500) and per acre
- Flexible
- Reproduction
- Takes advantage of...

- Drought
- Low input (3-8# grain)
- Pasture management

## High Supplement Hybrid

#### REWARD

- Milk production/cow (~15,000) and per acre
- Flexible
- Cows not stressed
- Takes advantage of...

- Drought
- Pasture management
- Pasture percentage consumed declining
- Moderate input (8-18# grain)
- System getting complex
- Equipment
- Reproduction

### **Almost There Confinement**

#### REWARD

 Milk production/cow (~20,000) and per acre

- Flexibility reduced
- Drought
- Pasture management
- Minimal pasture percentage consumed
- Moderate Input (15-22# grain)
- System getting complex
- Cows not stressed
- Equipment
- Reproduction
- Can you take advantage of...

# Confinement

#### REWARD

 Milk production/cow (~22,000)

- Flexibility reduced
- Drought
- Pasture percentage consumed nil (unless cut'n'carry)
  - Forage management
  - High input (20-30# grain)
- Complex system
- Cows stressed
- Equipment
- Reproduction
- Can you take advantage of...

### What were the Commonalities?

- Stress?
- Reproduction?
- Takes Advantage of....
- Flexibility?
- Complexity?
- Drought

We are all on the same team to make a living producing Milk! It is all Perception and Perspective!

### Goal is to Grow Grass!



# Parameters of the System Types

|             | Cow Size | Lactation | # Milk | Total DMI | # Grain | # Forage |
|-------------|----------|-----------|--------|-----------|---------|----------|
| Purist      | 850      | 7,000     | 23     | 24        | 0       | 24       |
| Realist     | 900      | 9,000     | 30     | 27        | 3       | 24       |
| Low Suppl.  | 1,000    | 12,500    | 42     | 33        | 5.5     | 27.5     |
| High Suppl. | 1,100    | 15,000    | 50     | 37        | 13      | 24       |
| Almost      | 1,250    | 20,000    | 67     | 45        | 18.5    | 26.5     |
| Confine     | 1,350    | 22,000    | 73     | 50        | 25      | 25       |

# Pasture-Based Dairies What Will it Take to Meet Your Goals?

|             | Stocking Rate 1 cow/acre |        |        |  |  |
|-------------|--------------------------|--------|--------|--|--|
|             | Percent Pasture Provided |        |        |  |  |
| Yield/acre  | 3 T/ac                   | 4 T/ac | 5 T/ac |  |  |
| Purist      | 63%                      | 85%    | 106%   |  |  |
| Realist     | 62%                      | 83%    | 104%   |  |  |
| Low Suppl.  | 55%                      | 73%    | 91%    |  |  |
| High Suppl. | 61%                      | 81%    | 102%   |  |  |

85% utilization rate

# Pasture-Based Dairies What Will it Take to Meet Your Goals?

|             | Stocking Rate 1.25 cow/acre |        |        |        |  |
|-------------|-----------------------------|--------|--------|--------|--|
|             | Percent Pasture Provided    |        |        |        |  |
| Yield/acre  | 3 T/ac                      | 4 T/ac | 5 T/ac | 6 T/ac |  |
| Purist      | 51%                         | 68%    | 85%    | 101%   |  |
| Realist     | 50%                         | 67%    | 83%    | 100%   |  |
| Low Suppl.  | 44%                         | 58%    | 73%    | 87%    |  |
| High Suppl. | 49%                         | 65%    | 81%    | 97%    |  |

85% utilization rate

# Pasture-Based Dairies What Will it Take to Meet Your Goals?

|             | Stocking Rate 1.5 cow/acre |        |        |        |
|-------------|----------------------------|--------|--------|--------|
|             | Percent Pasture Provided   |        |        |        |
| Yield/acre  | 3 T/ac                     | 4 T/ac | 5 T/ac | 6 T/ac |
| Purist      | 42%                        | 56%    | 70%    | 85%    |
| Realist     | 42%                        | 55%    | 69%    | 83%    |
| Low Suppl.  | 36%                        | 48%    | 61%    | 73%    |
| High Suppl. | 41%                        | 54%    | 68%    | 81%    |

85% utilization rate

# So How is Your Farm Designed?

- 100% perennials?
- 70% perennials and 30% annuals?
  - Annuals doubled cropped with winter and summer forages
- 50% perennials and 50% annuals?
  - Annuals doubled cropped with winter and summer forages
- Analysis using parameters:
  - Perennial grasses 4.2 tons/acre
  - Cool season annual 3 tons/acre
  - Warm season annual 3.6 tons/acre
  - Demand 36# DM/day
    - Stocking rate 1-1.4 cows/acre depending on desired DMI

### Dry Matter Yields by Farm System Type



### Dry Matter Yields by Farm System Type



■ 100% base farm ■ 70:30 farm ■ Demand

### Dry Matter Yields by Farm System Type





# Summary of Farms

 100% perennial farm - 4.2 tons/acre - 231 cow days 70:30 farm - 4.9 tons/acre - 272 cow days 50:50 farm - 5.4 tons/acre - 299 cow days

This one, Right????

## **Risks and Rewards**

#### **100% Perennial Farm**

- Consistent
- Reliable
- One time establishment in 5-10 years
- Cost/# DM forage less
- Less yield/acre
- Nutritive value less
- Drought

#### **Perennial plus Annuals**

- Higher nutritive value
- Higher yield/acre

- Planting twice per year
- Timing
- Time (labor)
- Equipment
- Stand establishment
- Drought

# Goal is to Grow Grass! No matter what type of farm!













# Intermission!

# Questions

Where does your farm stack up?

# What Impacts Pasture Growth?

- Rainfall
- Soil type
- Soil water availability
- Fertilization
- Solar radiation
- Growing days (heat units)
- Time of year
- Species
- Management

What Can You Impact to Increase Pasture Growth?

- Time k)
  Soil available water
- Solar dion

K

• Sop

- Growip sheat units
- Pasture species selection
#### How Does Soil Available Water Impact Yield?

 Available water is the difference between field capacity which is the maximum amount of water the soil can hold and wilting point where the plant can no longer extract water from the soil.

#### 4.1" (104 mm) Soil Available Water



**SAW** 

#### **Soil Available Water w Growing Days**

4.1" (104 mm) Soil Available Water



SAW GD

#### Year 2011

#### 4.1" (104 mm) Soil Available Water





#### Year 2012 4.1" (104 mm) Soil Available Water





#### Year 2013

#### 4.1" (104 mm) Soil Available Water





# **Comparing Soil Types**

- Newtonia
  - 7.9 inches soil water availability capacity
- MU Southwest Center (Wilderness, Creldon, Goss, Hoberg, Cedargap, Viraton, Gerald)
  - 4.1 inches soil water availability capacity

# **Comparison of Soil Available Water**



## Which Farm would you Buy?





#### Evapotranspiration

- Transpiration consists of the vaporization of liquid water contained in plant tissues and the vapor removal to the atmosphere.
- **Evaporation** is the process whereby liquid water is converted to water vapor (vaporization) and removed from the evaporating surface (vapor removal).
- The combination of two separate processes whereby water is lost on the one hand from the soil surface by evaporation and on the other hand from the crop by transpiration is referred to as evapotranspiration (ET).

|        | 2011   | 2012   | 2013   |                |
|--------|--------|--------|--------|----------------|
|        | Inches | Inches | Inches | Average 3 year |
| 1-Apr  | 0.06   | 0.11   | 0.12   | 0.10           |
| 8-Apr  | 0.14   | 0.13   | 0.09   | 0.12           |
| 15-Apr | 0.14   | 0.14   | 0.11   | 0.13           |
| 22-Apr | 0.11   | 0.16   | 0.09   | 0.12           |
| 29-Apr | 0.10   | 0.16   | 0.13   | 0.13           |
| 6-May  | 0.13   | 0.15   | 0.11   | 0.13           |
| 13-May | 0.15   | 0.20   | 0.17   | 0.18           |
| 20-May | 0.14   | 0.22   | 0.15   | 0.17           |
| 27-May | 0.12   | 0.21   | 0.16   | 0.16           |
| 3-Jun  | 0.21   | 0.21   | 0.13   | 0.19           |
| 10-Jun | 0.22   | 0.23   | 0.21   | 0.22           |
| 17-Jun | 0.19   | 0.23   | 0.20   | 0.21           |
| 24-Jun | 0.22   | 0.28   | 0.25   | 0.25           |
| 1-Jul  | 0.22   | 0.25   | 0.21   | 0.23           |
| 8-Jul  | 0.21   | 0.22   | 0.25   | 0.23           |
| 15-Jul | 0.23   | 0.26   | 0.23   | 0.24           |
| 22-Jul | 0.24   | 0.25   | 0.16   | 0.22           |
| 29-Jul | 0.21   | 0.23   | 0.13   | 0.19           |
| 5-Aug  | 0.21   | 0.22   | 0.11   | 0.18           |
| 12-Aug | 0.14   | 0.16   | 0.15   | 0.15           |
| 19-Aug | 0.18   | 0.21   | 0.18   | 0.19           |
| 26-Aug | 0.20   | 0.14   | 0.19   | 0.18           |
| 2-Sep  | 0.24   | 0.16   | 0.16   | 0.19           |
| 9-Sep  | 0.16   | 0.13   | 0.17   | 0.15           |
| 16-Sep | 0.12   | 0.13   | 0.12   | 0.12           |
| 23-Sep | 0.10   | 0.11   | 0.13   | 0.11           |
| 30-Sep | 0.15   | 0.09   | 0.12   | 0.12           |
| 7-Oct  | 0.17   | 0.08   | 0.11   | 0.12           |
| 14-Oct | 0.13   | 0.12   | 0.07   | 0.11           |
| 21-Oct | 0.11   | 0.08   | 0.08   | 0.09           |
| 28-Oct | 0.11   | 0.07   | 0.05   | 0.08           |
| 4-Nov  | 0.11   | 0.09   | 0.07   | 0.09           |
| 11-Nov | 0.07   | 0.06   | 0.06   | 0.06           |
| 18-Nov | 0.09   | 0.07   | 0.07   | 0.08           |
| 25-Nov | 0.04   | 0.06   | 0.04   | 0.05           |
| 2-Dec  | 0.04   | 0.05   | 0.02   | 0.04           |
| 9-Dec  | 0.03   | 0.06   | 0.02   | 0.03           |
| 16-Dec | 0.03   | 0.05   | 0.04   | 0.04           |
| 23-Dec | 0.03   | 0.03   | 0.03   | 0.03           |

Evapotranspiration rate 0.20 inches/day

| SW Center Soils              | Maximum | 75%  | 50%  | 25%  |
|------------------------------|---------|------|------|------|
| Soil available water(inches) | 4.10    | 3.08 | 2.05 | 1.03 |
| Days to empty                | 21      | 15   | 10   | 5    |
| Newtonia Soil Type           |         |      |      |      |
| Soil available water(inches) | 7.9     | 5.9  | 4.0  | 2.0  |
| Days to empty                | 40      | 30   | 20   | 10   |

- Folks in the Ozarks like to say...
  - "2 weeks from a drought"
- It's TRUE!

#### Is Irrigation an Opportunity or Risk?



# **Multiple Regression Analysis**

| Regression Statistics                |              |            |          |          |            |           |            |              |
|--------------------------------------|--------------|------------|----------|----------|------------|-----------|------------|--------------|
| Multiple R                           | 0.875813     |            |          |          |            |           |            |              |
| R Square                             | 0.767049     |            |          |          |            |           |            |              |
| Adjusted R Square                    | 0.751166     |            |          |          |            |           |            |              |
| Standard Error                       | 11.04325     |            |          |          |            |           |            |              |
| Observations                         | 48           |            |          |          |            |           |            |              |
| A RALATER ALL THE REAL               |              |            |          |          |            |           |            | and the real |
| ANOVA                                |              | 12 30      | Lite -   |          |            | T IN      | · · · ·    |              |
|                                      | df           | SS         | MS       | F        | gnificance | F         |            |              |
| Regression                           | 3            | 17668.74   | 5889.582 | 48.29369 | 5.7E-14    | 2. 9 4    |            |              |
| Residual                             | 44           | 5365.952   | 121.9534 |          |            |           |            |              |
| Total                                | 47           | 23034.7    |          | 1 and    | -          |           |            |              |
|                                      | AL EX        |            |          | and and  |            |           | is state   | St. Salar    |
|                                      | Coefficients | andard Err | t Stat   | P-value  | Lower 95%  | Jpper 95% | ower 95.0% | pper 95.0%   |
| Intercept                            | 52.7017      | 22.33453   | 2.359651 | 0.022794 | 7.689412   | 97.71399  | 7.689412   | 97.71399     |
| Week                                 | -0.388       | 0.396727   | -0.978   | 0.33342  | -1.18755   | 0.411551  | -1.18755   | 0.411551     |
| Average of Available Soil Water (mm) | 0.516395     | 0.053104   | 9.724145 | 1.57E-12 | 0.40937    | 0.62342   | 0.40937    | 0.62342      |
| Average of GD adjusted               | -1.09443     | 0.452329   | -2.41954 | 0.01974  | -2.00604   | -0.18282  | -2.00604   | -0.18282     |

#### Just to show I did it and didn't make this stuff up!

#### **Multiple Regression Equation for Irrigation**

- Growth Rate = (Week x -0.39) + (SAW x 0.52) + (GD units x -1.09) + 52.7
  - Week = week of the year
  - SAW = soil available water
  - GD unit = growing day heat units
  - June 1- Sept 15
  - $-R^2 = 0.75$

### Dry Matter Yield Response to 5 Irrigation Levels



Fig. 1. Yearly mean (1996–1998) dry matter yield (DMY) response of eight cool-season grass species to five irrigation levels. Two plots are shown (a) standard pasture species and (b) less typical and/or more drought tolerant pasture species. The eight species average DMY is plotted in both graphs to aid in comparison. Only perennial ryegrass and meadow brome did not have a significant curvilinear response.

WALDRON ET AL.: STABILITY OF PASTURE GRASSES CROP SCIENCE, VOL. 42, MAY–JUNE 2002









# Is Irrigation Cost Effective?

 What are the "replacement" costs for feed if you don't grow the "extra" pasture?



#### Annualized Cost per Ton of Dry Matter Forage for Different Irrigation Systems

**Response Rate (Pounds DM Forage per acre inch water applied)** 

|                             | 200   | 300  | 400  | 500  | 600  | 700  | 800  | 900  |
|-----------------------------|-------|------|------|------|------|------|------|------|
| Pod-line                    | \$145 | \$97 | \$73 | \$58 | \$48 | \$41 | \$36 | \$32 |
| <mark>Spider</mark>         | \$72  | \$48 | \$36 | \$29 | \$24 | \$21 | \$18 | \$16 |
| Traveling gun               | \$122 | \$81 | \$61 | \$49 | \$41 | \$35 | \$30 | \$27 |
| Pivot and<br>well(electric) | \$142 | \$94 | \$71 | \$57 | \$47 | \$40 | \$35 | \$31 |

**Cool Season Forages** 

Warm Season Forages

Which should we grow?

What are the Risks and Rewards?

# Irrigation Risks and Rewards

- Upfront Costs
  - Could be over \$1000/acre depending on scale and source
- Labor
  - Needs vary by system
- Maintenance
- Cost-effective
  - What is your return per acre inch?
  - Response rates per acre inch?
- Insurance program
- Nutritive value can be slightly reduced
- PICK YOUR FORAGE WISELY!

# Intangibles?



# Intermission!

# Questions

Is Irrigation a Viable Option for you?

# Reproduction Risks and Rewards



#### This is What We Want, Right?









#### Calving Pattern of Synchronization vs. Non-Synchronization Cows Second Lactation and Older



#### Lactation Curves of Cows Freshening in February through March



#### Modeling Synch vs. Non-Synch – 100 Cows

| NON SYNCH                           | Annual Per Herd (lbs.) | SYNCH                               | Annual Per Herd (lbs.) |  |
|-------------------------------------|------------------------|-------------------------------------|------------------------|--|
| Feed Cost Summary                   |                        | Feed Cost Summary                   |                        |  |
| Grain                               | 329,649                | Grain                               | 335.648                |  |
| Dry cow hay                         | 143,223                | Dry cow hay                         | 119,585                |  |
| Lactating cow hay                   | 41,736                 | Lactating cow hay                   | 53.603                 |  |
| Silage                              | 257,817                | Silage                              | 278,105                |  |
| Baleage                             | 17,000                 | Baleage                             | 17,000                 |  |
| Pasture                             | 452,077                | Pasture                             | 451,275                |  |
| Total                               | 1,241,501              | Total                               | 1,255,216              |  |
| Economic Summary                    | Annual                 | Economic Summary                    | Annual                 |  |
| Gross milk sales                    | \$247,462              | Gross milk sales                    | \$253,511              |  |
| Income over purchased feed & forage | \$163,432              | Income over purchased feed & forage | \$167,196              |  |
| Annual milk produced                | 1,302,429              | Annual milk produced                | 1,334,269              |  |

| Difference         | \$3,765       |
|--------------------|---------------|
| With cost of synch | \$2 365       |
| products           | <i>42,303</i> |

#### \$2,365 advantage



- Synch
  - Costlier
  - Labor efficient
  - Chance of a major screw up
  - Tighten calving window
  - More lactating feed
  - More milk
  - Weather event could be fun
  - Propagating infertility?

- Inexpensive feed source
  - If done right!
  - Very expensive if done WRONG!
- Constant vigilance
  - Monitor!
- Can be species specific
  - Bunch grasses vs. jointed
  - Cool season vs. warm season
  - Root/stubble reserves vs. all photosynthetic
- If you mess it up you better fix it!
  - DMI, yield and nutritive value effected
- Evaluate the next 7 slides!








# Pasture Management

## **Pasture Management**



## Pasture Management



#### **Cutting Height Impact on Total DM Yield**



Fig. 1. Total annual dry matter (DM) yield in 2002 and 2003 of tall fescue and perennial ryegrass when repeatedly mowed to different stubble heights. Contributions of seasonal yields are differentiated by background fill of histogram bars. Mean separation was conducted on total DM yield. Within years, bars with common letters do not differ at  $\alpha = 0.05$  probability level. Error bars represent two times the standard error of the mean.

#### Impact of Cutting Height on Stand Counts

| Species            | Stubble height | Stand density           |  |
|--------------------|----------------|-------------------------|--|
| 0.2                | cm             | tillers m <sup>-2</sup> |  |
| Perennial ryegrass | 2.5            | 1100d†                  |  |
|                    | 5              | 821d                    |  |
|                    | 7.5            | 1437cd                  |  |
|                    | 10             | 2822ab                  |  |
|                    | 12.5           | 3280a                   |  |
|                    | 15             | 2488abc                 |  |
|                    |                |                         |  |
| Tall fescue        | 2.5            | 1389d                   |  |
|                    | 5              | 1326d                   |  |
|                    | 7.5            | 1279d                   |  |
|                    | 10             | 1453cd                  |  |
|                    | 12.5           | 1831bcd                 |  |
|                    | 15             | 1768bcd                 |  |
|                    | SEM±           | 378                     |  |

Table 4. Final stand counts of perennial ryegrass and tall fescue stands after 2 yr of repeatedly mowing to various stubble heights.

† Means with common letters within a column are not significantly different using Fisher's protected LSD (α = 0.05).

‡ Standard error of the mean.

# Why the Hang-up on Residual?

- Risks and rewards
- Dry matter intake may be limited
- Nutritive value impacted
- Stand longevity?

# **Forage Selection**

#### Production per Acre

|                   | Fescue<br>2010 | Ryegrass<br>2010 | Fescue<br>2009 | Ryegrass<br>2009 |
|-------------------|----------------|------------------|----------------|------------------|
| Grazing to July 1 | 3,773          | 4,228            | 4,600          | 4,510            |
| July 1-Sept 1     | 476            | 0                | 1,211          | 882              |
| Sept 1-Dry Off    | 2,646          | 1,148            | 1,575          | 1,757            |
| TOTAL(pounds)     | 6,895          | 5,376            | 7,386          | 7,149            |

#### 2009

Spring very cool, wet Summer cool, above normal rainfall Fall cool and very dry

#### 2010

Spring cool, normal rainfall Summer very hot, extreme drought Fall normal temperature, drought extends

### **Total Milk Production by Species**

| e-li      | 2010   |          | 2009   |          |
|-----------|--------|----------|--------|----------|
|           | Fescue | Ryegrass | Fescue | Ryegrass |
| Milk/Cow  | 9,513  | 10,277   | 9,785  | 10,531   |
| Milk/Acre | 11,576 | 12,294   | 11,916 | 12,619   |

Milk production from beginning of study to dry off 2009 grazing began March 25 2010 grazing began April 8

#### **Milk Production by Species**

| KA-E                     | 2010   |          | 2009   |          |
|--------------------------|--------|----------|--------|----------|
|                          | Fescue | Ryegrass | Fescue | Ryegrass |
| % Feed                   | 41%    | 28%      | 48%    | 47%      |
| # Milk<br>(Energy based) | 3580   | 2607     | 4429   | 4753     |

Milk production from beginning of study to dry off 2009 grazing began March 25 2010 grazing began April 8

## **Stay The Course!**

## **Know Your Goals!**

### **Be Flexible**

### **Focus on What's Important**

## Let the Grazing Begin!

# Grain Feeding?



# **Grain Feeding?**

- Response rate
- Bang for your buck
- Increased milk vs. weight gain vs. fertility
- Substitution rate
  - The Good, the bad and the ugly
- Does it fit YOUR SYSTEM?