
Feeding the Right Level of Concentrate

Tony R. Rickard, Stacey Hamilton, Stacy Hambelton, Joe Horner, Jim Humphrey, Rob Kallenbach, Sarah Kenyon, John Lory, Scott Poock, Gene Schmitz & Joe Zulovich University of Missouri Extension RickardT@missouri.edu

Milk yield vs profit in US

Drivers of Profit

	R^2
Cost of Production	0.70
Production /ha	0.36
Production /cow	0.19
Extra feed fed / cow	0.05

Summary of 20 years NZ Dairy Economic Survey data

	<u>Predomin</u>	antly Grass	Grass with Legumes		
	(Cool	season)			
	Spring	Summer	Spring	Summer	
utrient					

24-28

40-45

17-21

16-20

0.72 - 0.78

15-20

3-4

7-9

0.50-0.75

0.30-0.35

0.15-0.20

2.0-3.5

0.16 - 0.22

22-26

20-25

30-35

21-25

30-36

12-16

16-20

0.74-0.80

18-24

3-4

8-9

1.1-1.3

0.30-0.35

0.18-0.24

2.5-3.5

0.16-0.22 Missour OD 18-0; 2:6g Conf Oer 18-20, 26

18-22

25-30

25-30

28-34

48-55

21-25

21-26

0.66 - 0.72

12-15

3-4

7-9

0.50 - 0.75

0.30 - 0.35

0.15-0.20

2.0-3.5

20-24

25-30

25-30

25-30

35-45

15-19

18-23

0.70 - 0.74

15-20

3-4

7-9

1.1-1.3

0.30 - 0.35

0.18-0.24

2.5-3.5

Average nutrient composition for cool season grass pasture and legumes over a grazing season.a

Nutrient	
Crude Protein (CP), % DM	21-25
RUP ^b , % of CP	20-25
Sol. Pc, % of CP	35-40

ADFd, % DM

NDF^e, % DM

NE, Mcal/lb

Fat, % DM

Ash, %DM

Ca, % DM

Mg, % DM

KN GEDIM OF MISSOURI

s, Extension

P, % DM

Hemicellulose, % DM

Non-fiber carbohydrate (NFC), %DM

Cellulose, % DM

Characteristics of Pasture

- •18 34% Protein
 - High soluble protein
- •0.66 0.80 Net Energy
- •30 55% NDF
- Low non-fiber carbohydrates
 - ·12-24%

Characteristics of Pasture

•18 - 34% Protein

High soluble protein

•0.66 - 0.80 Net Energy

•30 – 55% NDF

Low non-fiber carbohydrates

·12-24%

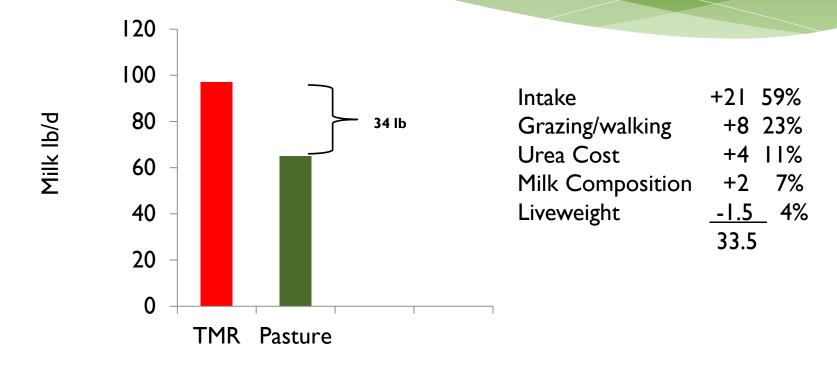
TMR

16-19%

0.76-0.79

<45%

32-36%


Pasture as the only Feedstuff

- * Research has shown that pasture alone can support 40-50 pounds of milk in spring
- * Cows will typically consume 3% BW in forages (3.25% in high producing cows?)
- * Usually lose more body condition
- * Long term effects on body condition and repro?????

Limits to Production on Pasture

Kolver & Mueller 1998

Supplements only increase milk production if they increase total energy intake.

Nothing magical!

Nutrients first-limiting milk production in high quality pastures

Pounds milk/cow/day

First-limiting nutrient

40

50

> 60

Energy

Energy

Energy & Protein

Factors affecting supplemtation

- * Nutrient composition of pastures
- * Dry matter intake
- * Economics

Calculating dry matter intake

- Important to be accurately measured
 - * Properly formulate the diet
 - * Prevent underfeeding or overfeeding

Factors affecting pasture DMI

- * Time spent grazing
 - * Gut fill
 - * 8-9 hours
- * Grazing patterns
 - * 2-5 major meals/day
 - * 2-3 hours at dawn, 4-5 hours at dusk

Level of Supplementation

Grain DMI	0.0	11.0	22.0	
Pasture DMI	30.6 ^a	27.9 ^a	21.6b	
Total DMI	30.6°	38.9 ^b	43.6 ^a	
Milk, lb/d	48.0°	59.0 ^b	66.9 ^a	
FCM, lb/d	48.2	51.0	51.5	
Fat %	3.89 ^a	3.50 ^b	3.08 ^c	
Protein %	2.85 ^c	2.95 ^b	3.05 ^a	
Milk/DMI	1.60	1.54	1.54	

Summary of Grazing Studies

Cows/Trt	Supplement	Milk	%Fat	% Protein
13 H	8 # corn-min	51.5	3.5	3.2
	12# corn-min	52.5	3.3	3.1
	16# corn-min	54.5	3.2	3.2
8 H	16# corn-min	51.5	3.1	2.9
	TMR-50# limit	49.7	3.2	2.8
5 H & 3 J	10# corn-soy/cg	54. I	3.7	3.2
5 ,	15# corn-soy/cg	54.8	3.6	3.2
	20# corn-soy/cg	54. I	3.8	3.3
	15# corn-soy/Alfg	56. I	3.8	3.3
8 H	I 2# hi fiber	61.4	3.6	3.0
8 J	I 2# hi fiber	51.0	4.8	3.4
8 H	20# hi fiber	67.8	3.6	2.9
8 J	20# hi fiber	52.4	4.5	3.5
9 H	15# coarse corn	66.2	3.2	3.0
	15# fine corn	65.3	2.9	3.0
	17# hi moisture corn	67.8	3.1	3.0
	I I# hi moisture corn	67. l	3.1	3.0

Grazing Behavior, intake and milk yield, supplemented and unsupplemented at two pasture allowances

Low Pasture Allowance (55 lb/cow/day)

High Pasture Allowance (90 lb/cow/day)

	0 Suppl.	19#	0 Suppl.	19#
		Suppl.		Suppl.
Grazing Behavior				
Grazing Time, min/d	609	534	626	522
Bites/min	56	54	56	55
Intake/bite, g DM/bite	0.55	0.55	0.60	0.59
Total bites/day	34,400	28,500	35,200	28,600
Intake (lb/day)				
Pasture	38.5	34.1	45.I	35.4
Supplement	-	19.1		19.1
Total	38.5	53.2	45.I	54.6
Milk Yield, lb/day	42.1	65.3	48.8	65.8

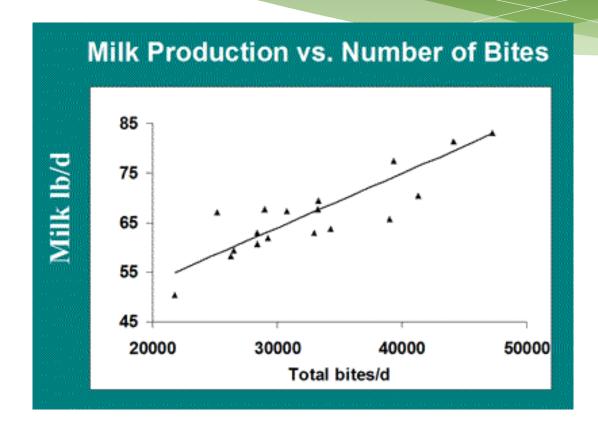
Effect of Pasture Allowance and Supplementation¹

	Feeding System					P≤ ²	
	LPA-	LPAC	HPA-	HPAC	CS	PA	CSxPA
Milk	42.0	65.3	48.8	65.8	<.01	.04	.03
% BF	3.87	3.23	3.78	3.28	Did not evaluate %		
% Pro	2.62	2.79	2.66	2.81	Did not evaluate %		
Dry Matter Intake							
Supplement	1.8	18.9	1.5	19.1	<.01	0.56	0.36
Pasture	38.4	34.1	45.1	35.4	<.01	<.01	<.01
TOTAL DMI	40.2	53.0	46.6	54.5	<.01	<.01	<.01

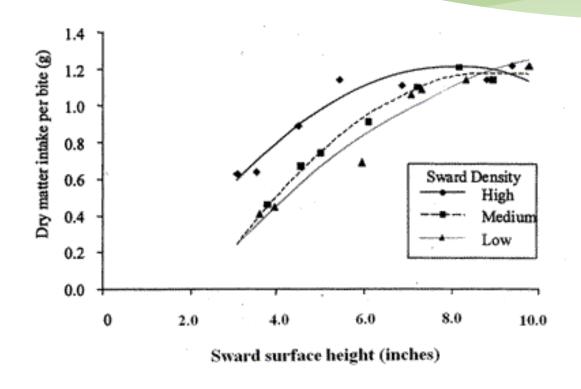
As adapted from Tozer et.al. J. Dairy Sci. 87:2902-2911

²CS Concentrate Effect; PA Pasture Allowance Effect; CSxPA interaction

Effect of Pasture Allowance and Supplementation¹


	Feeding System					
	LPA-	LPAC	HPA-	HPAC		
Milk	42.0	65.3	48.8	65.8		
Income \$/c/d	4.89	7.24	5.66	7.34		
Expenses \$/c/d						
-Rations	0.23	1.52	0.20	1.53		
-Pasture	1.36	1.21	2.35	1.85		
-Total Cost	1.59	2.72	2.55	3.38		
IOFC \$/c/d	3.30	4.51	3.10	3.96		

¹As adapted from Tozer et.al. J. Dairy Sci. 87:2902-2911


Milk Production vs Number of Bites at 2 Pasture Allowances

Effect of Sward Height & Denisity on Bite Mass

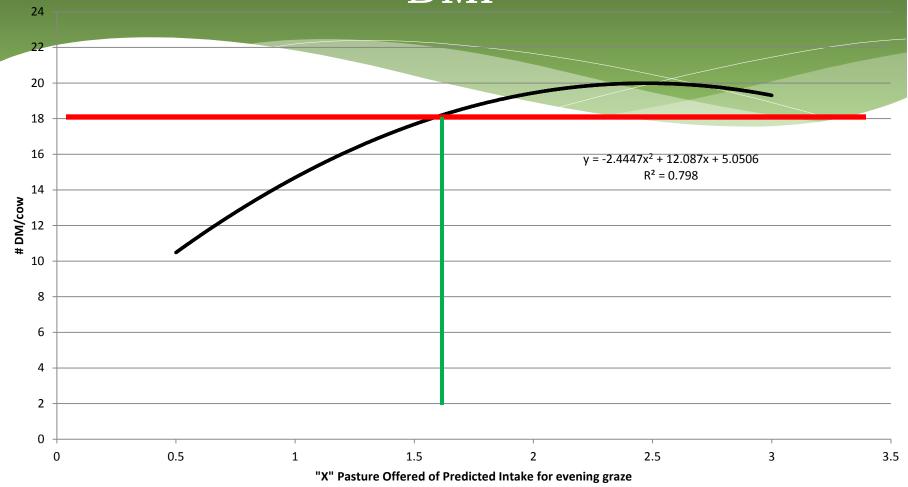
Organic Herd 2012*

	Grass I Only	Lo Supplement 6 lb Grain	Hi Supplement 12 lb Grain
Milk	32.2 ^a	40.4 ^b	39.4 ^b
% BF	3.82a	3.78 ^b	3.38 ^b
% Protein	3.20 ^a	3.24 ^a	3.20 ^a
MUN	14.25 ^a	10.06 ^b	7.33 ^c
Energy CM	32.2a	37.2 ^b	36.3 ^b
TMR Costs \$	0.00a	3.18 ^b	4.21°
IOFC \$	3.61a	2.20 ^b	0.38 ^c

^{*}Heins, University of Minnesota

^{abc}Means within a row with different superscripts different P<0.05

Effects of NSC on Ruminal Ammonia Levels*


	Hi	Hi N Lo N		p-val		ues	
	+NSC	-NSC	+NSC	-NSC	N	NSC	NxNSC
NH3-N	13.2	17.6	5.4	7.5	<.001	<.001	<.05
рН	6.05	6.19	6.11	6.17	NS	<.001	<.05

Hall, US Dairy Forage Research Center
Hi N – fertilized with urea
+NSC cows drenched 4x/day with 50:50 mix of dextrose and cornflour

Comparison of "50-300%" of Predicted DMI

Pasture allowance is a double edged sword

- Too much results in
 - * Well fed cows
 - * Poor pasture quality??
 - * Low utilization
- * Too little results in:
 - * Hungry cows
 - * Excellent pasture quality
 - * Less milk
 - * Higher utilization
- * Have to balance out the good, the bad and the ugly!

J. Dairy Sci. 88:1231-1243

American Dairy Science Association, 2005

The Interaction of Strain of Holstein-Friesian Cows and Pasture-Based Feed Systems on Milk Yield, Body Weight, and Body Condition Score

B. Horan, ^{1,2} P. Dillon, ¹ P. Faverdin, ³ L. Delaby, ³ F. Buckley, ¹ and M. Rath ² ¹Dairy Production Department, Teagasc, Dairy Production Research Centre Moorepark, Fermoy, Co. Cork, Ireland ²Department of Animal Science, Faculty of Agriculture, University College Dublin, Belfield, Ireland ³ SINRA, UMR Production du Lait, 36590 St Gilles, France

- NA-type HF and NZ HF cows
- either 900 or 3,600 lb/cow
- NA HF response = 0.99 lb milk/lb concentrates fed

• NZ HF response = 0.51 lb milk/lb concentrates fed

Influence of dairy cow genotype on milksolids, body condition and reproduction response to concentrate supplementation

E.S. KOLVER, J.R. ROCHE, C.R. BURKE, and P.W. ASPIN

Dexcel Limited, Private Bag 3221, Hamilton, New Zealand

- · NA HF and NZ HF cows
- •0, 2076, or 4,077 lb/cow
- •0, 7, or 14lb/cow/d
- NA HF response = 1.1 lb milk/lb concentrates fed 0.8 lb milk/lb concentrates fed
- NZ HF response = 0.8 lb milk/lb concentrates fed 0.3 lb milk/lb concentrates fed

© 2002 British Society of Animal Science

Animal Science 2002, 75: 433-445

The influence of cow genetic merit for milk production on response to level of concentrate supplementation in a grass-based system

J. Kennedy^{1,2†}, P. Dillon¹, P. Faverdin³, L. Delaby³, F. Buckley¹ and M. Rath²

¹Dairy Production Department, Teagasc, Moorepark Production Research Centre, Fermoy, Co. Cork, Ireland ²Department of Animal Science, Faculty of Agriculture, University College Dublin, Belfield, Dublin 4, Ireland ³NRA, UMR Production du Init, 35599 St Gelles, France

Multiyear project → System response (BCS included)

- 929, 2,002, or 3,807 lb concentrates/year
- 14,000 to 18,000 lb milk/cow/year
- Medium Merit = 0.6 to 0.7 lb milk/lb concentrates fed
- High Merit = 0.8 to 1.0 lb milk/lb concentrates fed

-42

Science Association, 2003.

ew: Production and Digestion of Supplemented on Pasture

· High Merit and Low merit cows

1, 6 or 12 lb concentrates/cow/d

• Medium merit response = 0.90 lb milk/lb concentrates fed

• **High merit** response = 0.95 lb milk/lb concentrates fed

F. Bargo,* 1 L. D. Muller,* E. S. Kolver,† and J. E. Delahoy*

*Department of Dairy and Animal Science, The Pennsylvaria State University, University Park, PA 16802

†Dexcel Ltd, Private Bag 3221, Hamilton, New Zealand

- Supplementation reduced grazing time by 12 min/kg concentrate
- Response to supplements = 0.9 lb milk/lb concentrate

J. Dairy Sci. 86:610-621

G. Stakelum,* and M. Rath†

@ American Dairy Science Association, 2003

†Department of Animal Science, Faculty of Agriculture, University College Dublin, Belfield, Dublin 4, Ireland ±INRA, UMR Production du Lait, 35590 St. Gilles, France

Effect of Genetic Merit and Concentrate Su

Grass Intake and Milk Production with Hol

J. Kennedy,*† P. Dillon,* L. Delaby,‡ P. Faverdin,‡

'Dairy Production Department, Teagasc, Moorepark Production Research Center, Fermov, Co. Cork, Ireland

J. Dairy Sci. 89:3532-3543

@ American Dairy Science Association, 2006.

Holstein-Friesian Strain and Feed Effects on Milk Production, Body Weight, and Body Condition Score Profiles in Grazing Dairy Cows

J. R. Roche, *1,2 D. P. Berry,† and E. S. Kolver* *Dexcal, Hamilton, New Zealand †Teagasc Moorepark, Fermoy, Co. Cork, Ireland

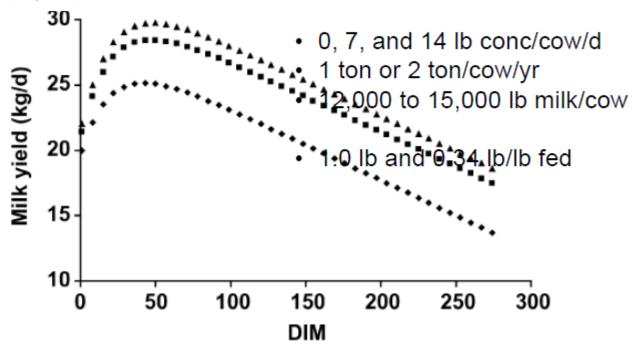


Figure 3. Effect of level of concentrate supplementation on the lactation profile for milk yield in cows receiving $0 (\spadesuit)$, $3 (\blacksquare)$, or $6 (\blacktriangle)$ kg of DM of a concentrate pellet daily throughout lactation.

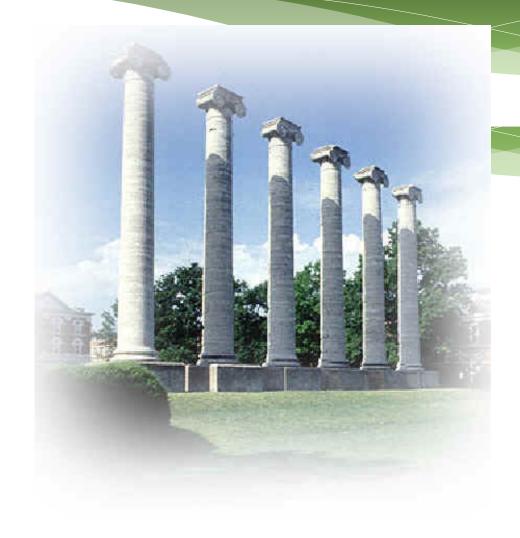
Level of supplementation

- * Research on supplementation ranges of I.8 I9.I lb/day
 - * Pasture DMI decreased by 13%
 - * Average all studies and supplementation increases milk production about 9.7 lb/d, or 22% compared with pasture only
 - * Does not take into account pasture DMI

Considering a no grain program?

- * Nothing drastic
 - * HIGH QUALITY PASTURES ABSOLUTELY ESSENTIAL
 - * Gradually decrease supplements, allow systems (animals, management) to adjust
 - * Decrease supplements by 2-3 pounds/day, wait 5-6 days before repeating
 - * May need ~ 50% more pasture for no grain diet

Progress begins.....



Progress begins at the **END** of your comfort zone

