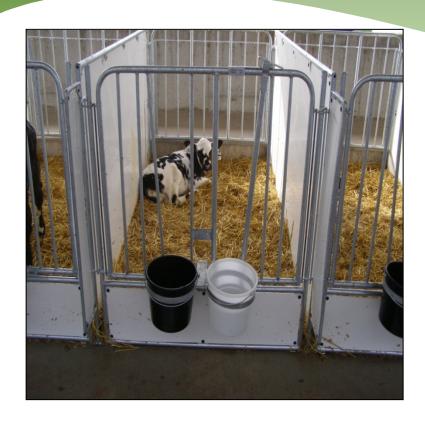
Calves: Birth to Weaning


Calf Rearing (Farming) is a Fine-Tuned Balancing Act

What To Do With a Newborn Calf?

56% removed ASAP, 36% allowed calf to nurse (2007 NAHMS)

Calf Hauling (Animal Welfare)

Entry to barn/pen

* Transport humanely - careful lifting and shifting

onto trailer and pens

The Newborn Calf

Temperature regulation

Often overlooked Jersey!!!!!

- * Poor ability to control body temperature for the first 24 hours of life
- * Hypothermia can be rapid
 - * Drops blood sugar levels and increases time to first suck
- Dry calves, avoid wind and cold concrete

Types of Warming Units

Colostrum

The first feeding of colostrum is the MOST important meal of a calf's life!

University of AZ Colostrum Study

	1 • .		
•	Liters	vs. 4	Liters
		V3. T	

Veterinary cost per calf	\$24.5 I	\$14.77		
ADG	1.76# (0.8 kg)	2.27# (1.03 kg)		
First-lactation yield	19,739# (8972 kg)	21,845# (9930 kg)		
Second-lactation yield	21,261# (9664 kg)	24,903# (11,320 kg)		

Faber, S.N., N.E. Faber, T.C. McCauley, and R.L.Ax. 2005. Effects of colostrum ingestion on lactational performance. The Professional Animal Scientist. 21:420-425.

Colostrum vs. Milk

* Colostrum

*	Total	solids	23.	.9%

- * Fat 6.7%
- * Protein 4.8%
- * Calcium 0.26%
- * Vitamin A 295
- * Vitamin E 84
- * IgG 48mg/ml
- * Immunological active cells
- * Lactoferrin

* Milk

*	Total	solids	12.5%
*	Fat		3.6%

- * Protein 3.2%
- * Calcium 0.13%
- * Vitamin A 34
- * Vitamin E 15
- * IgG 0.6mg/ml

Colostrum

- * Timing of collection
- * Cleanliness
- * Timing of feeding
- * Volume
- * Method
- * IgG concentration (IgG)

Cleanliness

Culture of Colostrum

- * <100,000 cfu/mL total bacteria
- * <10,000 cfu/mL fecal coliforms
- * Heat treatment of colostrum

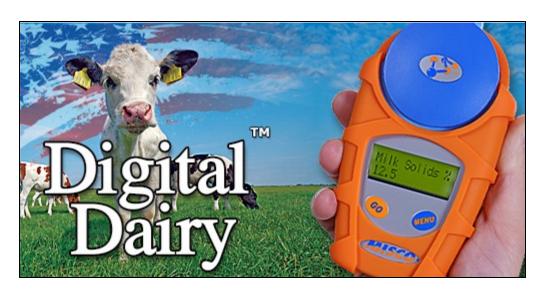
Volume and Method

Colostrum should be fed within hours after birth? (Quick)

ASAP (within 3 hours of birth)

How much should be feed? (Quantity) 10% of BW

of IgG's needed for passive transfer? (Quality)


200 grams of IgG

IgG Concentration: Colostrum Quality Assessment

- * Colostrometer (Green)
- * Brix Refractometer (≥ 22%)

Colostrum Absorption <u>Assessment</u>

Total Protein

	Deaths	Total	Odds Ratio
<u>></u> 5.5	36	714	1.81
5-5.49	89	1350	1.31
< 5.0	78	857	

Goal ≥ 80%

P=0.002

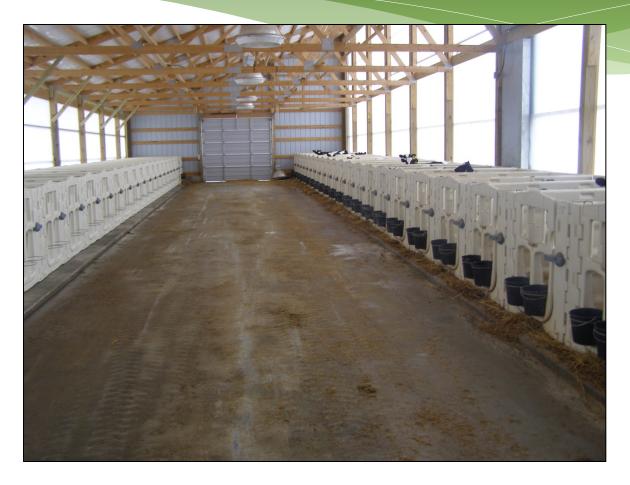
Dr. Dale Moore, Washington State University

2012

Southwest Center				
77.8%	Overall			
63.6%	Ist calf Heifers			
84.0%	Mature cows			

When a calf nurses from a cow, it consumes an unknown quantity of an unknown quality of colostrum!

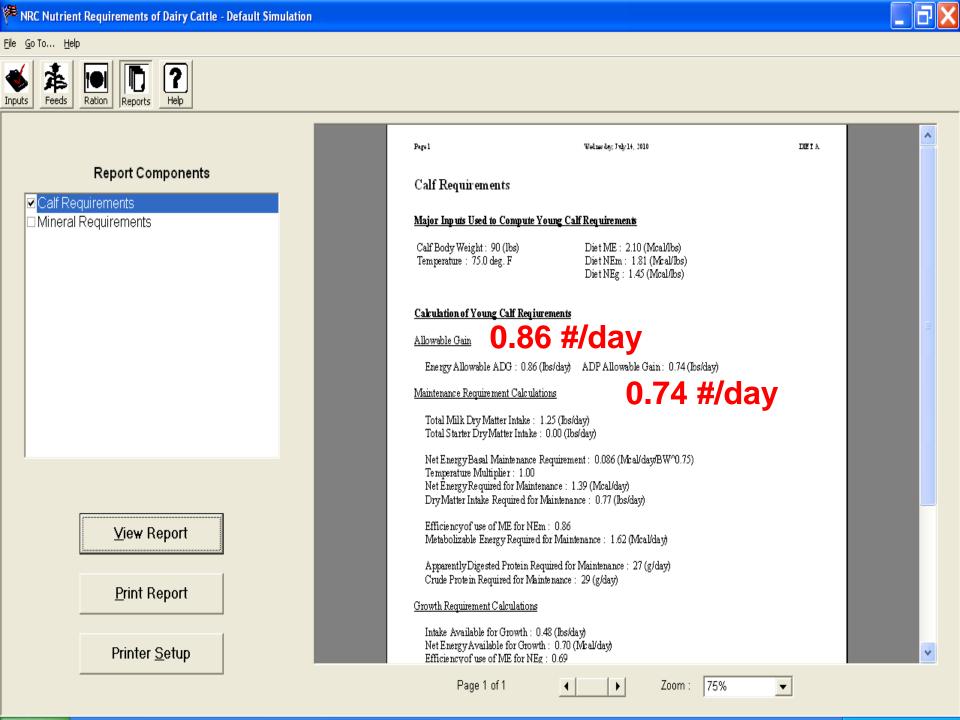
Colostrum Collecting, Storing (if not feeding)

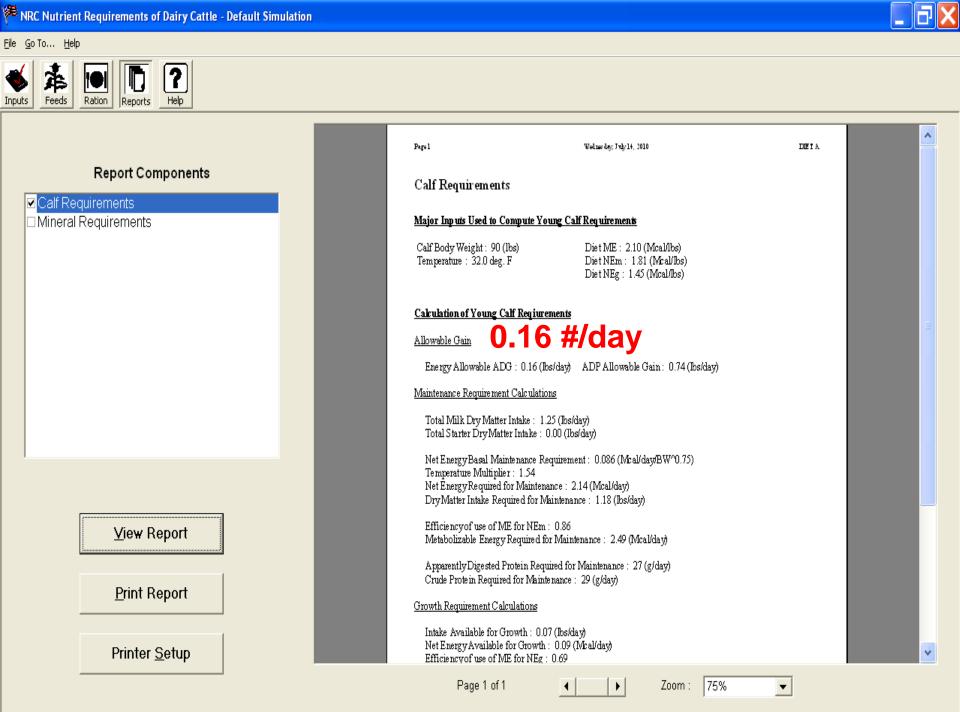

Goal: <45° F (<7.2° C) ASAP

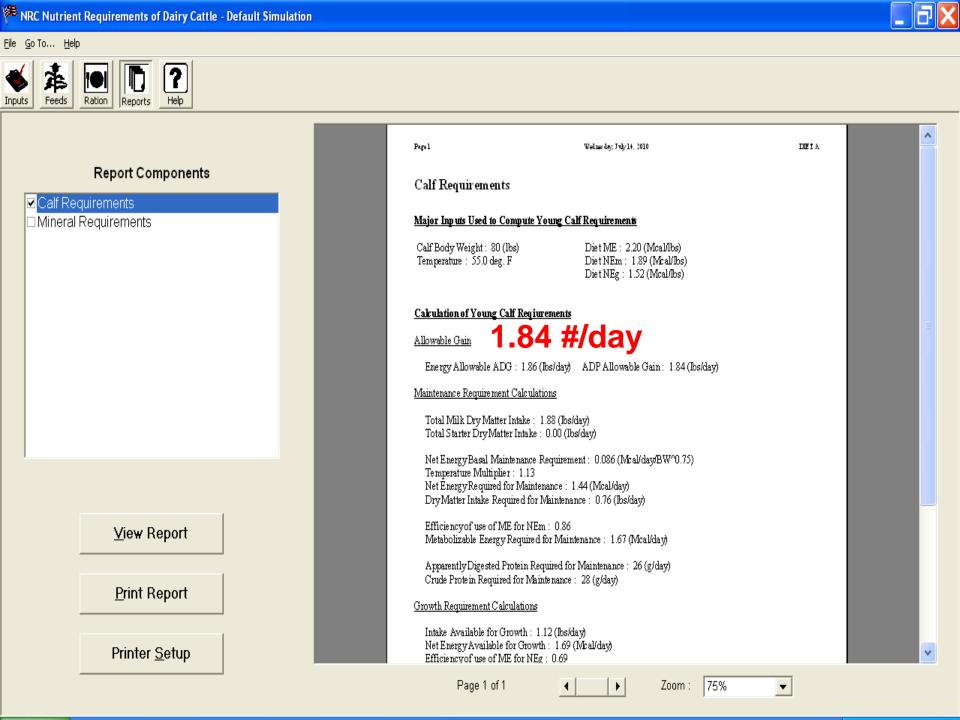
Refrigerated--- 7 days

Frozen--- 12 months

Calories




Sources of Milk


- * Colostrum
 - * Essential for first day of life
 - * Preferable for first 3 days
 - * Rich in nutrients, good for gut bacteria
- * Whole milk
 - * Perfect food for calves
 - * Calves less prone to scours, but don't feed milk from mastitis cows
 - * Pasteurizer
- * Calf milk replacer
 - * Usually consistent quality
 - * Can move rearing away from the parlor

What Are the Advantages of Accelerated Growth?

- * Increased Average Daily Gain (ADG) pre-weaning
- * Mixed results in yearling and calving weights
- * Majority of studies indicate decreased breeding and calving age
- * Majority of studies cite significant or tendency to have an increased first lactation milk yield

What Defines an Accelerated Milk Replacer

- * High protein (26-28% crude protein)
- * Moderate fat (15-20% crude fat)
- * Increased amounts of milk replacer and water with weaning at a "younger" age (~6-7 weeks of age)

MU Southwest Center Study: Objectives

- Determine if intensified milk feeding in small framed dairy heifers will result in:
 - * Younger weaned calves at similar weights as traditionally fed calves
 - Decreased breeding and calving age
 - * Increased milk production in first lactation

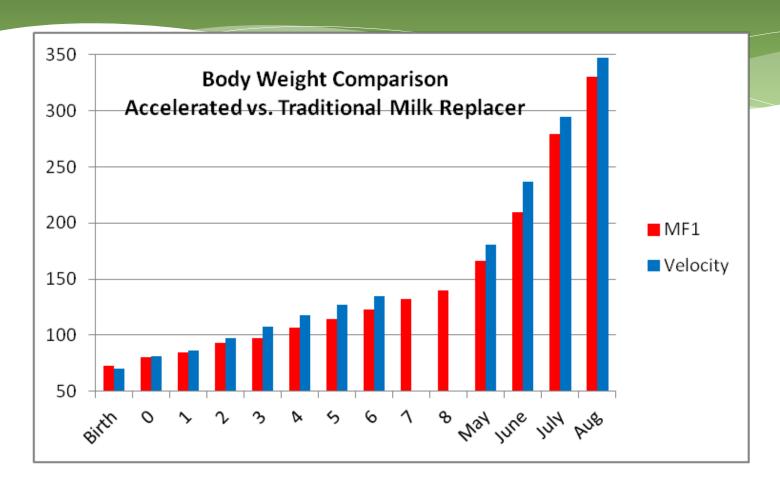
Active Drug Ingredient		Active Drug Ingredient			
Neomycin Sulfate	1300 grams/ton	Neomycin Sulfate	1600 grams/ton		
Oxytetracycline (from oxytetracycline dihydrate base)	1300 grams/ton	Oxytetracycline (from oxytetracycline dihydrate base)	1600 grams/ton		
Guaranteed Analysis		Guaranteed Analysis			
Crude Protein, min	28.50%	Crude Protein, min	20.0%		
Crude Fat, min	15.00%	Crude Fat, min	20.0%		
Crude Fiber, max	0.15%	Crude Fiber, max	0.15%		
Calcium, min	0.75%	Calcium (Ca), min	0.75%		
Calcium, max	1.25%	Calcium (Ca), max	1.25%		
Phosphorus, min	0.60%	Phosphorus (P), min	0.7%		

Parameters

- * 16 Holstein, Jersey or Crossbred heifers assigned to Milk Formula I as the traditional milk replacer program
- * 21 Holstein, Jersey or Crossbred heifers assigned to Velocity as the accelerated feeding program
- * Calves were assigned as groups of 8 and "mob-fed" using 10 nipple feeders
- * Birth weight:
 - * MFI = 70.6 #
 - * Velocity = 69.0 #
- * Average age at start of treatment
 - * MFI = 9.7 days
 - * Velocity = 7.0 days

Protocol for Feeding Traditional vs. Accelerated Milk Replacers

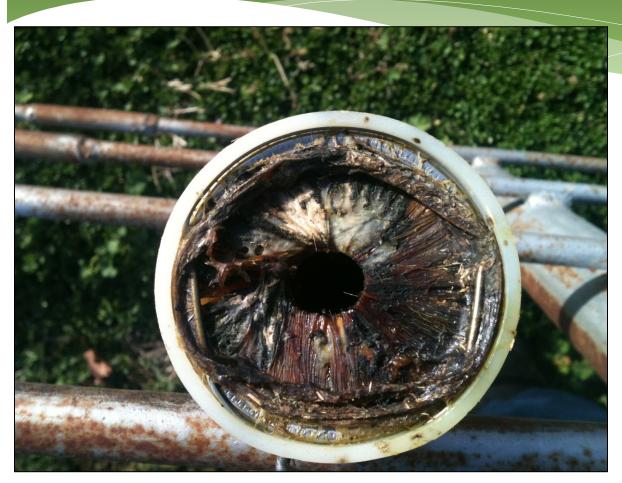
Milk Formula 1-										
traditional MR										
week I week 2 week 3 week 4 week 5 week 6 week 7 week 8										
Oz powder/feeding	7.5	10	10	10	10	10	10	10		
warm water (Pints)/feeding	3	4	4	4	4	4	4	4		
Mi	ilk Forn	nula I-t	raditio	nal milk	replac	er – 68 #	‡			
			Velo	city-						
		ac	celera	ated N	1R					
Oz powder/feeding 7.5 12.5 15 15 10 warm water										
(pints)/feeding	3	5	6	6	6	4				
Velocity-accelerated milk replacer – 66#										


Approximate Cost of Each Program

	Velocity (Accelerated)			MFI				
		Cost/Unit	Total Cost		Cost/Unit	Total Cost	Difference	Period Fed
Milk	66	\$1.90	\$125.40	68	\$1.43	\$97.24	\$28.16	to weaning
Starter	315	\$0.28	\$88.20	292.5	\$0.28	\$81.90	\$6.30	3 days to April 30
Grower	450	\$0.27	\$121.05	450	\$0.27	\$121.05		May 1-July 31
Developer	675	\$0.25	\$167.40	675	\$0.25	\$167.40		Aug I to end of December
Total Per Calf			\$502.05			\$467.59	\$34.46	

Southwest Center

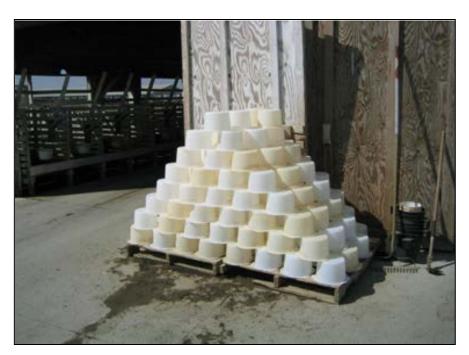
Conclusions


- * Average Daily Gain increased in heifers fed Velocity
- * Weaning weight same at 6 weeks vs. 8 weeks
- * Numerical advantage in weights throughout
- * Intangibles
 - * Calf health
 - * Labor and time
- * Stay tuned for:
 - * Breeding/calving age (95.2% vs 87.5% PR, and 2/8/14 vs 2/11/14 calving date)
 - * Milk yield

Project sponsored by Hartville Feed and Milk Specialties Global Animal Nutrition

Comfort and Cleanliness

Dip Navels 7% Iodine


Cleanliness (Soaking ≠ Drying)

Cleanliness (DRY)

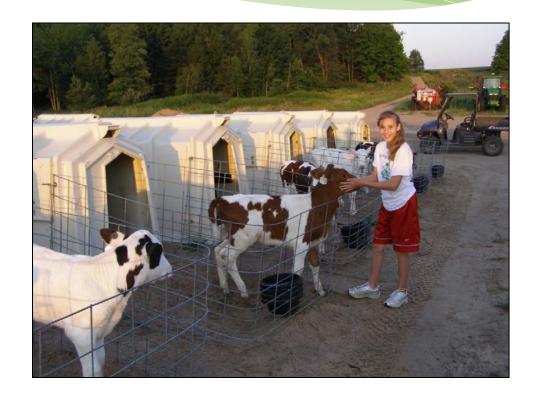
Bloat

- * Feed milk at what temperature? (~105° F/40° C)
- * Bottle Fed Operations:

 Out with the old, in with the new
- * Thoroughly mix milk replacer
- * History of Pneumonia?

Individual or Group

Calves and Mob Feeders



What else?

- * Water
- * Grain
- * Forage?

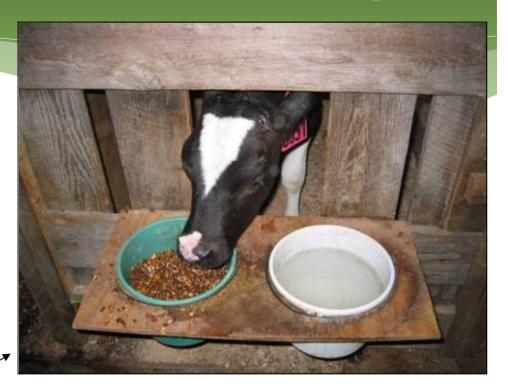
Relationship between Water and Grain

Free Choice vs. No Water

ADG Increase	0.678# (0.31 kg)	0.399# (0.18 kg)
Starter Increase	0.927# (0.42 kg)	0.643# (0.29 kg)
Scour Days	4.5 days	5.4 days

(Kertz, et al 1984)

Impacting Rumen Development: Hay vs Grain


A.J. Heinrichs, The Pennsylvania State University

Ideal Criteria for Weaning?

- * Age
- * Space Availability
- * Daily Grain Intake

A calf that is eating ~2 lbs (0.9 kg) of starter/day for several consecutive days is ready for the weaning process.

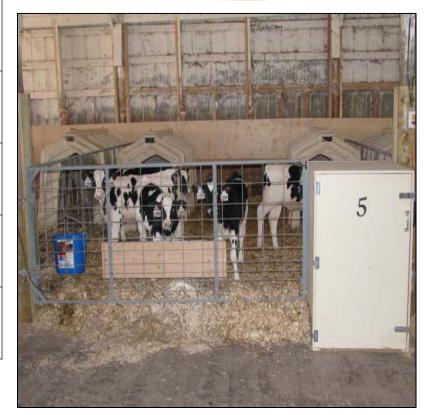
Thermo Neutral Zone is ~50-75° F (10-24° C) (calves <1 month old)

* Good Rule of Thumb:

- * For every I°F drop in ambient temperature below the TNZ, maintenance energy increases by I%
- * 25°F (-3.8°C) 25% increase
- * 0°F (-17°C) 50% increase

Dairy Calf and Heifer Association

* Gold Standards for raising heifers



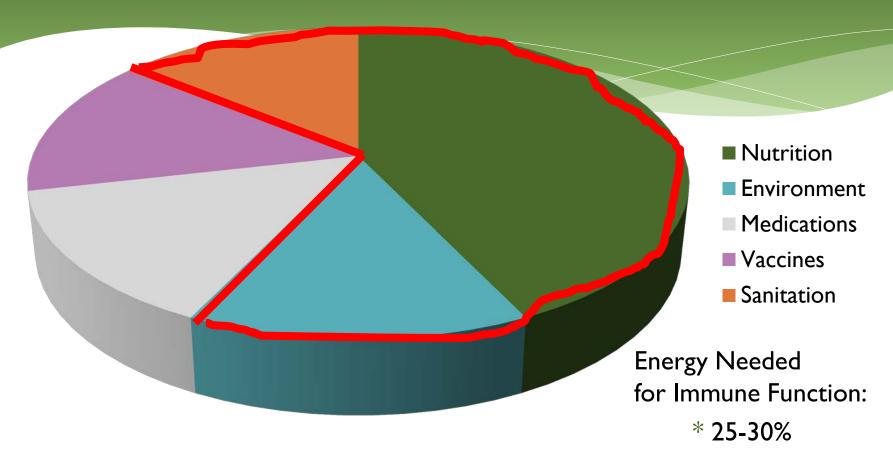
Deaths

Mortality

I-60 days of age	< 5%
61-120 days of age	< 2%
121-180 days of age	< 1%
6-12 months	< 1%
12 months to calving	< 0.5%

Disease Incidence

Scours	
< 60 days of age	< 25%
61-120 days of age	< 2%
121-180 days of age	< 1%


Pneumonia	
< 60 days of age	< 10%
61-120 days of age	< 15%
121-180 days of age	< 2%
6-12 months	< 3%
12 months to calving	< 1%

Other diseases	
6-12 months	< 4%
12 months to calving	< 2%

Pieces of the Disease Management Pie

^{*} Lochmiller, R.L. and Deerenberg, C. 2000. Trade-offs in evolutionary immunology: just what is the cost of Immunity? Oikos 88: 87-98.

When problems persist, don't get caught chasing zebras.

