HOW TO ECONOMICALLY USE FERTILIZER IN PASTURE-BASED DAIRY SYSTEMS

Robert Kallenbach University of Missouri

BEFORE YOU FERTILIZE...ASK "WHY?"

× Some good reasons to fertilize

- You expect good growing conditions AND need additional feed
- + You want to change forage growth patterns to meet animal feed needs
- + You want to strategically use fertilizer to encourage one type of forage plant over another
- The cost to grow additional forage with fertilizer is less than it would cost to purchase more forage or additional feed

WHAT NUTRIENTS DO PLANTS REQUIRE?

× Macro-nutrients - N, P, K, Ca, Mg, S

- + N most likely to be economic for dairy systems
- P, K most likely needed in farm development but less likely to be required as the system matures
- + S is a growing concern
- Micro-nutrients B,Fe,Cu,I,Mn,Mo,Zn,CI,Na,Co,Si
 - + Unlikely to show economic responses unless severely deficient
- Soil pH not a nutrient, but regulates the availability of nutrients to plants

OTHER NUTRIENTS

- × Often sold as "micro-blends" or foliar sprays
- Expensive....some blends costs as much as \$100 per acre
- Almost all research shows little economic response in pastures
- Boron may be an exception for pastures that include alfalfa

OTHER NUTRIENTS

SOIL pH – THE REGULATOR

	Strongly /	Acid	Medium Acki	Slighty Add	Very Slightly Acid	Very Sighty Alkalne	Slightly Alkslina	Medium Alkaline	Strongly Alkaine
					Nitr	ogen	WEIGHTAR		
					Phos	ohorue			
					Pota	esium			
-					Sul	phur			
					Cal	cium			
						Magnosium			
			Iron				10000000		
		М	anganoso		NAME OF COLUMN				
		12 mil 10	Boron				Conditioned		
	-	Cop	per and Zine				CALCULATION OF		
					Molyth	denum			
4.0	4.5	50	5.5 6	0 6	5 7	0 7 2H	.5 8	.0 8	5 9.0 9.5 10.0

LIME TAKES A WHILE

MACRONUTRIENTS

× The building block of proteins (enzymes), chlorophyll, DNA, RNA

MACRONUTRIENTS

× Storage and transfer of energy

MACRONUTRIENTS

 Enzyme activation, water relations, energy relations, nitrogen uptake, translocation, starch synthesis

DETERMINING PLANT NEEDS

- Determine nutrients in grain or hay
- Replace the nutrients removed from soil

NUTRIENT CONTENT OF CROPS

Crop	Ν	$P_{2}O_{5}$	K ₂ 0
	Ik	o / acre	<u>)</u>
Corn (150 bu.)	165	53	38
Wheat (50 bu.)	65	32	25
Alfalfa (6 ton)	270*	90	270
Cool-season grass (3 ton)	150	40	145

PASTURE FERTILITY NEEDS ARE COMPLEX

PASTURE FERTILITY

- Fertilizer requirements for pastures are different than for cropping systems or even hay production
 - Roughly,75 to 90% of phosphorus (P) and potassium (K) are returned to the soil
 - + About 1/4 to 1/2 of the nitrogen applied to pasture as manure or urine is returned...about 1/2 to 3/4 lost
- It takes about 40 to 50 lb of N to grow 1 ton of cool-season grass

NUTRIENT REMOVAL FROM PASTURE

Crop	Ν	$P_{2}O_{5}$	K ₂ 0
	lb	/ acre	<u>)</u>
Alfalfa hay (6 ton)	270*	90	270
Cool-season grass hay (3 ton)	150	40	145
Pasture-based dairy ¹	120	-9	-65

¹Assumes 1.5 tons of grain feeding per day + 0.8 ton of hay annually

PASTURE FERTILIZATION STRATEGIES

- × Establish fertility levels adequate for target species
 - P, K, and lime most critical to begin farm development
- Distribute nutrients excreted by livestock evenly over the pasture system
 - Typically, not a major issue if grazing management is right
- Vise N fertilizer to provide additional feed ONLY when needed

SPECIES DIFFER IN NUTRIENT NEEDS

MINIMUM SOIL TEST REQUIREMENTS

Species	pH(s)	Ρ	К
		- lb / a	cre -
Cool-season grasses	5.0	20	200
Warm-season grasses	5.0	20	200
Alfalfa	6.5	40	300
Red Clover	6.0	25	250
White Clover	5.5	25	250
Birdsfoot Trefoil	5.5	20	225
Lespedeza	5.0	20	200

LEGUMES

Provide nitrogen (N)
Have higher P and K needs are require higher soil pH
Higher quality than most grasses

×Better yield distribution

THE BENEFIT OF GRASS/LEGUME MIXES

ANATOMY OF A ROOT NODULE

Growing zones

Leghemoglobin (N₂ fixing zone)

Inactive zone

Attachment point Alfalfa root

Picture from Michael Russelle, USDA-ARS

HOST-BACTERIA SPECIFICITY

Host	Rhizobia
Soybean	Bradyrhizobium japonicum
Alfalfa	Sinorhizobium meliloti
Trefoil	Mesorhizobium loti
Vetch	Rhizobium leguminosarum bv viciae
Clovers	bv <i>trifolii</i>

N₂ FIXATION IN MIXED STANDS

Species	N ₂ Fixed (lb/a)			
	Year 1	Older		
Alfalfa	70 – 80	120 – 180		
Birdsfoot trefoil	30 – 60	80 – 150		
Red clover	10 – 90	40 – 330		
White clover	1 - 100	20 – 300		

(Ledgard and Steele, 1992; West and Mallarino, 1996)

TRANSFER OF FIXED N TO GRASS

- × 10 50 lb. N/acre/yr
- × 10 20% of the N fixed is transferred
- × 10 50% of grass N is from legume

LEGUME/GRASS CYCLE

N FERTILIZATION OF MIXED PASTURE

WHAT N FERTILIZER SHOULD I USE?

- Lots of effective N fertilizer products
 - + Urea, ammonium nitrate and ammonium sulfate most common
- Several effective 'new' products sold
 - + Typically urea with some sort of coating
- Several 'new' ineffective foliar sprays and products
 - + Expensive....some blends costs as much as \$100 per acre
 - Almost all research shows little or no economic response in pastures

N FERTILIZER SOURCES/MIXTURES

Fertilizer Source	For mixture treatments		
	Rate of S applied (lb/acre)	% N derived from ESN and/or Urea	
Ammonium Nitrate	-	-	
Urea	-	-	
Ammonium Sulfate	-	-	
Urea treated with Agrotain	-	-	
ESN polymer coated Urea	-	-	
Nurea	-	-	
Nurea with 10% polymer N	-	-	
Ammonium Sulfate (10S)/Urea	10	88	
Ammonium Sulfate (20S)/Urea	20	75	
Ammonium Sulfate (40S)/Urea	40	53	
Ammonium Sulfate (10S)/ESN	10	88	
Ammonium Sulfate (20S)/ESN	20	75	
Ammonium Sulfate (40S)/ESN	40	53	
1/3 each Ammonium Sulfate + ESN + Urea	28.6	67	
Unfertilized Control	-	-	

SPRING APPLICATION

Fertilizer Source	Spring Forage Yield					
	<u>Sol</u>	uthern Miss	<u>ouri</u>	<u>Central</u>	<u>Central Missouri</u>	
	2005	2006	2007	2006	2007	
		(lb/acre)				
Ammonium nitrate	8081	3974	3648	4603*	4827	
Urea	7780	3681	3140	4038	4717	
Ammonium sulfate	8834*	3988*	4184*	4408	4916*	
Urea with Agrotain	8300	3874	3787	4188	4686	
ESN coated Urea	7134	2115	3372	2739	3673	
Nurea	8142	3409	3401	4196	4564	
Nurea + 10% poly N	7368	3625	3402	3919	4309	
Unfertilized Control	4232	1654	1566	1688	2167	
LSD (0.05)	916	570	371	708	491	

SOIL pH IN SPRING 2007

	Southern Missouri	Central Missouri
Fertilizer Source	Soil p)H(s)
Ammonium Nitrate	5.92	6.92
Urea	5.86	6.92
Ammonium Sulfate	5.62	6.76
Urea treated with Agrotain	6.08*	7.16
ESN polymer coated Urea	5.92	6.84
Nurea	5.94	6.90
Unfertilized Control	5.84	6.96
LSD (0.05)	0.33	NS

FALL APPLICATION

Fertilizer Source	Autumn Forage Yield				
	<u>Southern Missouri</u>		<u>Central</u>	<u>Missouri</u>	
	2005	2006	2006	2007	
		(lb/a	acre)		
Ammonium nitrate	1932*	1918	2700	2483*	
Urea	1245	2201	2865*	1935	
Ammonium sulfate	1579	2245*	2787	2325	
Urea with Agrotain	1523	1880	2696	2287	
ESN coated Urea	1249	1549	2117	1826	
Nurea	1437	2188	2738	2167	
Nurea + 10% poly N	988	2176	2725	2003	
Unfertilized Control	492	834	1721	1370	
LSD (0.05)	522	616	586	430	

N FERTILIZER FORM CONCLUSIONS

- × Ammonium sulfate consistently in the top group
- Ammonium nitrate and urea treated with Agrotain, are also consistently effective products
- Urea (untreated) somewhat variable, effective if it rains, not so good when dry weather follows application
- ESN and mixtures with ESN appear to lag behind other treatments, especially in spring
- Mixtures of fertilizer products show little benefit to this point

CSG RESPONSE TO LATE-SUMMER N

MIXED VS. PURE GRASS SWARD

4-Year average autumn yield of tall fescue with and without red clover

SOIL NITRATE THE FOLLOWING SPRING

Average spring concentration of NO_3 in the soil profile when tall fescue was fertilized the previous autumn. Data from near Linneus, MO.

FORAGE YIELDS THE FOLLOWING YEAR

Four-year average May and July yields of tall fescue with and without red clover and treated with different levels of N the previous fall

RED CLOVER STANDS THE NEXT SPRING

RED CLOVER STANDS THE NEXT SPRING

N rate	2002	2003	2004	2005		
	Red clover plants per ft ²					
0	2.3	9.4	2.0	3.0		
50	1.6	7.7	1.7	1.5		
100	0.8	5.3	1.3	0.9		
150	0.8	3.3	0.7	0.9		
300	0.3	0.8	0.2	0.2		
LSD (0.05)	0.4	1.6	0.5	0.8		

LATE SUMMER (FALL) N APPLICATIONS

- × Yield responses nearly linear to 100 lb/acre of N
- Having clover in the stand gives a similar yield to grass alone
- Red clover stands are thinner but probably acceptable when up to 100 lb/of N per acre is applied in late summer
- Soil nitrate levels are low in all treatments except where unrealistic N rates are applied

FERTILIZATION DATE MATTERS

	Fei	rtilization da	ate
N response	March 15	May 15	Aug 15
lb DM/lb N	25	15	20

BUYING GUIDE (25 LB RESPONSE)

Corn Price (\$/bu)	Fertilizer Price (\$/lb)					
	0.40	0.50	0.70	0.90	1.10	
3.00	Fertilize	Fertilize	Buy Corn	Buy Corn	Buy Corn	
3.50	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	
4.00	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	
4.50	Fertilize	Fertilize	Fertilize	Fertilize	Buy Corn	
5.00	Fertilize	Fertilize	Fertilize	Fertilize	Buy Corn	
5.50	Fertilize	Fertilize	Fertilize	Fertilize	Fertilize	
6.00	Fertilize	Fertilize	Fertilize	Fertilize	Fertilize	

Assumes 65% utilization rate of forage. Forage contains 0.68 NEI

BUYING GUIDE (20 LB RESPONSE)

Corn Price (\$/bu)	Fertilizer Price (\$/lb)					
	0.40	0.50	0.70	0.90	1.10	
3.00	Fertilize	Fertilize	Buy Corn	Buy Corn	Buy Corn	
3.50	Fertilize	Fertilize	Buy Corn	Buy Corn	Buy Corn	
4.00	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	
4.50	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	
5.00	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	
5.50	Fertilize	Fertilize	Fertilize	Fertilize	Buy Corn	
6.00	Fertilize	Fertilize	Fertilize	Fertilize	Buy Corn	

Assumes 65% utilization rate of forage. Forage contains 0.68 NEI

BUYING GUIDE (15 LB RESPONSE)

Corn Price (\$/bu)	Fertilizer Price (\$/lb)					
	0.40	0.50	0.70	0.90	1.10	
3.00	Buy Corn	Buy Corn	Buy Corn	Buy Corn	Buy Corn	
3.50	Fertilize	Buy Corn	Buy Corn	Buy Corn	Buy Corn	
4.00	Fertilize	Fertilize	Buy Corn	Buy Corn	Buy Corn	
4.50	Fertilize	Fertilize	Buy Corn	Buy Corn	Buy Corn	
5.00	Fertilize	Fertilize	Buy Corn	Buy Corn	Buy Corn	
5.50	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	
6.00	Fertilize	Fertilize	Fertilize	Buy Corn	Buy Corn	

Assumes 65% utilization rate of forage. Forage contains 0.68 NEI

OPTIMIZING YOUR N FERTILIZER DOLLAR

× Focus on "Do I need the Forage?"

- × About ¼ of farm 50 lb/acre in early spring
- Depending on conditions ¼ of farm in late spring
- × About ³/₄ to all of farm in late summer
- × Perhaps a few other times as feed needs dictate
- Nitrogen can be an excellent or a lousy investment depending on alternative feed costs and growing conditions
- You are only paying for fertility if it allows you to <u>buy less</u>
 <u>feed</u> or <u>sell more milk</u>

WOULD ADDING N HERE HELP?

WOULD ADDING N HERE HELP?

WOULD ADDING N HERE HELP?

OPTIMIZING INVESTMENT IN FERTILIZER

- × Focus on needed nutrients for desired species
 - If needed lime, P and K improve legume survival (and do not hurt grass growth either) and are important in farm development
 - Remember most pasture-based dairy systems in the US do not have a huge removal (even surpluses) of P and K
- Nitrogen can be an excellent or a lousy investment depending on alternative feed costs and growing conditions
- You are only paying for fertility if it allows you to <u>buy less</u>
 <u>feed</u> or <u>sell more milk</u>